
Control Volume Analysis - Synopsis
All the conservation laws, e.g. conservation of mass, momentum, etc. are written for a system, an identifiable quantity of fixed mass.  In order to apply these laws to fluid flow problems one must follow the individual particles and apply the laws to these fluid elements. This method, also called the "differential approach" would provide detailed information regarding the flowfield at every point.  However, from an engineering perspective, this is not always necessary and the resources (mathematical, computer and gray matter) required for differential analysis are not always justified.

In many practical problems we are interested in the overall effects the flowfield has on a specific body or device. e.g. loss of pressure over a length of pipe, drag on a body as it moves in a fluid or as fluid moves around it. In short, it is the net effect of the flowfield on a region which is of interest to most engineers. To do this we need to transform the conserva​tion laws such that they may be applied to an identifiable region or control volume rather than a system. 

Reynold's Transport Theorem
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The Reynold's Transport Theorem (RTT) allows us to relate the rate of change of a property of a system to the rate of change of the same property in a control volume.  For an arbitrary extensive property N, and intensive property η where: 

the Reynolds Transport Theorem is written as:
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(1)
Equation 1 is the most general form of the Reynolds Transport Theorem.  The first term on the left hand side (LHS) is the time rate of change of the extensive property N of the system.  The first term on the right hand side (RHS) is a volume integral (denoted by the subscript CV) and represents the time rate of change of the extensive property N in the control volume.  The second term on the RHS is a surface integral and represents the net flux of the property N out of the control volume, through the control surface CS.  By letting N represent various properties such as mass, momentum and energy, we can derive the conservation equations for control volumes for all such properties.

Points to Note Regarding the Transport Theorem:
· RTT is derived for a control volume that is fixed relative to a reference coordinate frame.  Hence, all the velocities specified in the coordinate frame are also relative to the control volume.

· RTT in the form of equation 1 can also be applied to a control volume that is moving with a constant velocity relative to the reference coordinate frame (ie an inertial control volume).  In such a case the velocities must be defined relative to the control volume.  In other words, imagine yourself sitting on the moving control volume, the velocities of the fluid entering or leaving the control volumes which you measure are the velocities which should be used in the RTT.

· ρ(Vn)dA in the second term on the RHS of eqn. 1 is a scalar and represents the mass flow rate or mass flux through the differential area dA.  For fluid flowing into the CV it becomes negative and vice versa.

Conservation of Mass (COM)
This is the most fundamental of conservation laws and one which we use all the time, sometimes without even being aware of it.  In fluid mechanics it is also commonly referred to as the continuity equation.  To derive the control volume form of the conservation of mass, let N = M (total mass)   η = 1

Substituting in RTT, we get the conservation of mass for a control volume:
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(2)
Since, by definition, the mass of a system does not change the LHS is equal to zero.  The first term on the RHS represents the rate of change of mass within the control volume and the second term is the net mass flow rate out of the control volume.

Conservation of Linear Momentum (COLM)  

Let N = P =  Vdm  η = V
The control volume form of the conservation of momentum is :


[image: image5.wmf]CV

CVCS

  =   VdV +  V(V.n)dA

F

t

rr

¶

å

¶

òò




(3)
The above equation is just another representation of Newton's Second Law.  Simply put, it states that the sum of all the forces on the control volume, represented by FCV is equal to the rate of change of momentum of the control volume.  Notice that the rate of change of momentum of the control volume is made of two parts: the change inside the control volume (first term on the RHS) and the change due to flow across the control surface (second term on the RHS).  The term ρ(Vn)dA is once again the mass flux and multiplied by the velocity vector, V, it gives the momentum flux across dA.

Note that the forces acting on the control volume include surface forces such as pressure and shear stress; body forces such as weight and any forces exposed if the control volume cuts through solid boundaries, e.g. through a shaft or a bolt.  Also keep in mind that the conserva​tion of momentum equation is a vector equation and can hence be split up into its three scaler components in the x,y,z directions (for a Cartesian reference frame). 

Conservation of Energy (COE)
Conservation of energy, also called the first law of thermodynamics, states that the rate of heat transferred to the system minus the work done by the system is equal to the rate of change of total energy of the system.  In mathematical form:
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(4)
Starting from equation 4 and letting N = E (the total energy) and η = e (total energy per unit mass) the conservation of energy for a control volume is given by:
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(5)
In equation 5 we have ignored energy transfer due to electromagnetic effects which is usually negligible for problems we will normally deal with.  We have also neglected work done by viscous shear,  this type of work can be neglected by choosing the appropriate control volume.  Ws represents the rate of shaft work, h is the enthalpy of the fluid and e is given by:


[image: image8.wmf]2

V

e = u +  + gz

2


It is the sum of internal, kinetic and potential energies of the fluid.

Applications of the Conservation Equations
As stated earlier, the conservation of mass is the most fundamental of the conservation equations.  In solving any problem, whether it utilizes COLM or COE, the COM equation is always applied first to obtain information which is later needed to solve the problem.  Some problems involve using all three conservation laws together.  Regardless of which laws you may use in solving a problem, any known process has to satisfy all the conserva​tion laws.

Approach to Problem Solving
1. Draw the appropriate Control Volume.  This is perhaps the most important aspect of the solution.  A control volume is defined by imaginary boundaries which are of arbitrary shape and can also 'cut' through solid boundaries.  By making the appropri​ate choice in your control volume you can generally simplify your analysis consider​ably.  In defining a control volume you should be aware of where and what type of information is available and where properties need to be determined.  Remember, the goal is to simplify the analysis, so avoid exposing forces which are not known and not asked for in the problem.  In most cases the choice for a control volume will be clear.  Labeling the control volume and indicating regions (inlets and outlets) where informa​tion is known or is required helps tremendously in subsequent analysis.

2. Define a coordinate system.  You need to define a reference frame relative to which the direction of all the vectors can be assigned.  This is also necessary before you can reduce the vector equation to its scalar component equations.

3. List all your assumptions.  Making the right assumptions will further simplify the analysis.  Some examples are given below.

i.
Assuming steady flow, with a number of fixed area inlets/outlets, reduces the COM to:
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i.e. mass flow rate in is equal to mass flow rate out.

ii.
Further assuming one-dimensional (1-D) flow, which means that the properties are uniform over the inlets and exits, reduces the COM and COLM to
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(COLM)
i.e. mass and momentum flux into the control volume equal to mass and​

     

momentum flux out of the control volume.  The summation signs refer to the summation over various inlets and exits.  The COE equation can be simplified in a similar manner.

4.
Analyze and critique on your results.  Do they make physical sense?  Our goal is to solve engineering problems, if results do not make sense from an engineering and physical perspective then you have  probably made a mistake somewhere in the analysis.
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