Basic Fluid Properties and Gover ning Equations

»Density (r): mass per unit volume (kg/m3or dug/ft3)
» Specific Volume (v=1/r ): volume per unit mass
» Temperature (T): thermodynamic property that measures the molecular activity
of an object. It isused to determine whether an object has reached thermal
equilibrium.
» Pressure (p):pressure can be considered as an averaged normal force exerted
on a unit surface area by impacting molecules.
(p= th—O N/m? or pascal; |b/in? or ps)
A® Oe [}
Pascal law: (under static condition) pressure acts uniformly inall directions. It also
acts perpendicular to the containing surface.

If afluid system is not in motion, then the fluid pressure is equal its thermodynamic
pressure.

» Atomspheric pressure (p,,,,): pressure measured at the earth’s surface.

1 atm = 14.696 psi = 1.01325 x 105 N/m? (pascal)

» Absolute pressure: pressure measured without reference to other pressures.

Gage pressure: pgage: P absolute ™ Parm



Atmospheric pressure can be measured using a barometer:

Vacuum p=0
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Force balance
P A=W =mg=rALg
P =rgL

r isthedensity of thefluid, gisthegravitatio nal constant



Similarly, this balance can be applied to asmall fluid element as shown

PA- (p+dp)A=mg =r Agdy, (jl—‘)p/ = - r g, integrate from fluid element to

Freesurf\afe, P=Py the free surface p(h) = p, +rgh
p+dp i h . . .
Example: If acontainer of fluid is accelerating
L] with an acceleration of a, to the right as shown below,
D T what is the shape of the free surface of the fluid?
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Buoyancy of a submerged body

free surface

h, =P+ . ghy
Net force due to pressure difference
Yy dF=(p,-p,)dA=r  g(h,-h;)dA
p,=p,+r  gh, Total net force (buoyancy)

R = Z dF =r ng (h,- h)dA=r L OVSisplaced

The principle of Archimedes
The buoyancy acting on a submerged object is equal to the weight of the
displaced fluid due to the presence of the object.

Thislaw isvalid for all fluid and regardless of the shape of the body. It can
also be applied to both fully and partially submerged bodies.



Example: Titanic sank when it struck an iceberg on April 14, 1912. Five

of its 16 watertight compartments were punctuated when it collides with
the iceberg underwater. Can you estimate the percentage of theiceberg that
Is actually beneath the water surface? It is known that when water freezes
a0°C, it expands and its specific gravity changesfrom 1to 0.917.

i

buoyancy

When the iceberg floats, its weight balances
the buoyancy force exerted on the iceberg by
the displaced water.

W =F,

|ceg ice- berg waterg submerged
\ |

smerged _ e _ 0917 _ 917%
Svlice- berg r water 1

Therefore, more than 90% of the iceberg
Is below the water surface.



Properties (cont.)

»Viscosity: Due to interaction between fluid molecules, the fluid flow
will resist a shearing motion. The viscosity is a measure of this resistance.

Moving Plate
— > constant force F
H constant speed U
Stationary Plate

From experimental observation, F u A(U/H)=A(dV/dy)
_F dv

t =—u —,wherd isshearstress
A dy
t = mz—v,wheremisdynamicviscosity, Theunit of mislt;tszeC or Nrszec
y
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: . : m : ft
Kinematicviscosityn =—, hasunit of or
r sec sec




Boundary Layer Concept

Immediately adjacent to a solid surface, the fluid particles are slowed

by the strong shear force between the fluid particles and the surface.

Thisrelatively dower moving layer of fluid iscalled a“boundary layer”.
A A

Laminar Turbulent >
P
dVv Question: which profile has larger wall shear stress?
=M In other words, which profile produces more frictional

dy drag against the motion of the solid surface?



Partial Differential Equations (PDE): Many physical phenomena are
governed by PDE since the physical functionsinvolved usually depend on two

or more independent variables (ex. Time, spatial coordinates). Their variation with
respect to these variables need to be described by PDE not ODE (Ordinary
Differential Equations).

Example: In dynamics, we often track the change of the position of an object
intime. Timeistheonly variablein this case. X=x(t), u=dx/dt, a=du/dt.

In heat transfer, temperature inside an object can vary with both time and space.
T=T(x,t). Thetemperature varieswith time since it has not reach itsthermal
equilibrium.

T
rcpﬂ _qm qout t0
The temperature can also vary in space as according to the Fourier’ s law:
T
q—-KAE If gt 0, then — i 10
X X



Basic equations of Fluid Mechanics

*Mass conservation (continuity eguation):
» The rate of mass stored = the rate of massin - the rate of mass out

am_
= Mo M

D Within agiven time [X, the fluid element with
Area]; a cross-sectional area of A moves a distance of

DL as shown.
The mass flow rate can be represented as

m:@:rA%:rAV
Dt

Dt



dm:d(rV):rd_er_vdr e
n ut

dt dt dt dt
Keep density constant, K eep volume constant,
volume changes with time density changes with time
ex: blow up a soap bubble ex: pump up a basketball
dm

o =AY, - (rAY)

For steady state condition: mass flow in = mass flow out

out

(r Av)in = (r AV)

out



Examples: filling up an empty tank

\ Water isfed into an empty tank using

\ ahose of cross-sectional area of 0.0005 m*
The flow speed out of the hose is measured
Tmras ey tobel0 m/s. Determine the rate of increase
o A 7 -h:?. b wghiala rdh !
il

B s A for the water height inside the tank dh/dt.
| TR e o P _}: . .
; fﬁ‘“ﬂﬁﬂ’fiﬁ “Lieli The cross-sectional areaof thetank is 1 m?2.

0, N0 Mass out

dm dV dn .

—=r — =7 — =M, 1 My, F ALY
dt dt A\ank dt mn mout Ahose

209059, = 0.005(m/ 5)
e 1]



V=20 m/s _
Section 2, A,=1 m¢?

> E—

V,=?

Section 1, A,=5 n?
M, = My
r, AV, =r ,AV,, for constant density

:&ﬁ(,) :@O = /
V, gAzé\/l el(—./)(20) 100(m/ s)



Momentum Conservation: (Newton's second |aw)
Net external forces lead to the change of linear momentum

o = d, -
F=—(mV
a dt( )
First, neglect viscosity . P+dP
o d
dL PA- (p+dp)A- Wsing —a(mV)
- Adp- 1 AdL) gZ20= r pyEV 9
A édL g adt g
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dp +VdV +gdz=0
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Euler’ s Equation



d
Euler’ s Equation: r—p +VdV + gdz=0

»First, dz=0 no e evation variation % +VdV =0

I

If dp>0, pressure increases as fluid flows downstream
then dV <0, velocity decreases due to the adverse pressure gradient
and viceversa.

> |f dp=0, no external pressure gradient | VdV +gdz=0

If dz<O, fluid flowsto alower point, dV>0, its velocity increases
and viceversa

d
»|f dV=0, no flow r—p +gdz=0

If dz<O, into the lower elevation inside the static fluid system,
dp>0, pressure increases
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Section 1

Section 2

>

Air flows through a converging duct as shown. The areasat sections1 & 2
are5 m3 and 1 m3, respectively. Theinlet flow speed is 20 m/s and we know
the outlet speed at section 2 is 100 m/s by mass conservation. If the pressure
at section 2 isthe atmospheric pressure at 1.01x10° N/m?, what is the pressure
at section 1. Neglect all viscous effects and given the density of the air

as 1.185 kg/m.

dp
"

— +VdV =0, integrate from section 1to section 2

Py _ V12 B V22

S
P, = P +853V22 - V12)
aa.1850

=1.01" 10° +¢
e 2 g
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r

2

2(100? - 20%) =1.01" 10° +5688(Pa)




