Particle Acceleration

Tracking the particle as we follow it path:
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As the particle moves, its velocity changes to
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The acceleration of a particle (substantial acceleration) is given by
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Physical Interpretation
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Example

An incompressible, inviscid flow past acircular cylinder of diameter dis
shown below. The flow variation along the approaching stagnation streamline
(A-B) can be expressed as;

V(x,y=0) =uX)i, where u(x) = U, (1- 5—22) -1 2
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U,=1m/s  Along A-B streamline, the velocity drops very fast asthe particle
approaches the cylinder. At the surface of the cylinder, the veocity
IS zero (stagnation point) and the surface pressure is a maximum.



Example (cont.)

Determine the acceleration experienced by a particle asit flows along the
stagnation streamline.
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+u—+0+0, sincev =w =0 along the stagnation streamline.
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 The particle slows down dueto the
strong deceleration as it approaches the
cylinder.

» The maximum decel eration occurs at
x=-1.29R=-1.29 m with a magnitude of
a(max)=-0.372(m/s?)



Example (cont.)

Determine the pressure distribution along the streamline using Bernoulli’s
eguation. Also determine the stagnation pressure at the stagnation point.
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Bernoulli's equation:
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0.6 ! ! ! » The pressure increases as the particle

approaches the stagnation point.

* |t reaches the maximum value of 0.5,
that is Py,,-P,=(1/2)r Uy asu(x)=>0
near the stagnation point.
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Momentum Conservation

From Newton'ssecond law : Force = (mass)(accel eration)
Consider asmall element dxdydz as shown below.

The element experiences an acceleration
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Momentum Balance (cont.)

Net force acting along the x-direction:
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Normal stress Shear stresses (note: t,: shear stress
acting on surfaces perpendicular to
the z-axis, not shown in previous
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Body force

The differential momentum equation along the x-direction is
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similar equations can be derived along they & z directions



Euler’ s Equations

For an inviscid flow, the shear stresses are zero and the normal stresses

are simply the pressure: t = Ofor al shear stresses, s ,, =s,, =s , =-P
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Similar equations for y & z directions can be derived
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Note: Integration of the Euler’s equations along a streamline will giverise to the
Bernoulli’ s equation.



Navier and Stokes Equations

For aviscous flow, the relationships between the normal/shear stresses and the
rate of deformation (velocity field variation) can be determined by making a
simple assumption. That is, the stresses are linearly related to the rate of
deformation (Newtonian fluid). (see chapter 5-4.3) The proportional constant for
the relation is the dynamic viscosity of the fluid (m). Based on this, Navier and
Stokes derived the famous Navier-Stokes equations:
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