
Particle Acceleration
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entire flow, not the velocity of a particle.
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The acceleration of a particle (substantial acceleration) is given by
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Physical Interpretation
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Example
An incompressible, inviscid flow past a circular cylinder of diameter d is 
shown below.  The flow variation along the approaching stagnation streamline 
(A-B) can be expressed as: 
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Along A-B streamline, the velocity drops very fast as the particle
approaches the cylinder.  At the surface of the cylinder, the velocity 
is zero (stagnation point) and the surface pressure is a maximum.



Example (cont.)

Determine the acceleration experienced by a particle as it flows along the 
stagnation streamline.
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• The particle slows down due to the 
strong deceleration as it approaches the 
cylinder.
• The maximum deceleration occurs at 
x=-1.29R=-1.29 m with a magnitude of 
a(max)=-0.372(m/s2)



Example (cont.)
Determine the pressure distribution along the streamline using Bernoulli’s 
equation.  Also determine the stagnation pressure at the stagnation point.

22

2 2
2 2

2

P(x) u ( )
Bernoulli's equation: 

2 2

1 1
( ) ( ( )) 1 1

2 2 2

( ) 1
( )

2

O

atm O

atm

UPx

P x P U u x
x x

P x P
P x

x

ρ ρ

ρ ρ ρ

ρ

∞+ = +

    − = − = − − =        
−∆ = =

∆P x( )

x
5 4 3 2 1

0

0.2

0.4

0.6
• The pressure increases as the particle 
approaches the stagnation point.
• It reaches the maximum value of 0.5, 
that is Pstag-P∞=(1/2)ρUO

2 as u(x)à0 
near the stagnation point.



Momentum Conservation
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The element experiences an acceleration

DV
m ( )

Dt

as it is under the action of various forces:

normal stresses, shear stresses, and gravitational force.
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Momentum Balance (cont.)
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Net force acting along the x-direction:
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Normal stress Shear stresses (note: τzx: shear stress 
acting on surfaces perpendicular to 
the z-axis, not shown in previous 
slide)

Body force
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The differential momentum equation along the x-direction is
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similar equations can be derived along the y & z directions
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Euler’s Equations
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For an inviscid flow, the shear stresses are zero and the normal stresses

are simply the pressure: 0 for all shear stresses, 
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Note: Integration of the Euler’s equations along a streamline will give rise to the 
Bernoulli’s equation.



Navier and Stokes Equations

For a viscous flow, the relationships between the normal/shear stresses and the 
rate of deformation (velocity field variation) can be determined by making a 
simple assumption.  That is, the stresses are linearly related to the rate of 
deformation (Newtonian fluid).  (see chapter 5-4.3) The proportional constant for 
the relation is the dynamic viscosity of the fluid (µ).  Based on this, Navier and 
Stokes derived the famous Navier-Stokes equations:
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