
Thermal Considerations in a Pipe Flow

• Thermal conditions
ð Laminar or turbulent
ð entrance flow and fully developed thermal condition

Thermal entrance region, xfd,t

For laminar flows the thermal entrance length is a function of the 
Reynolds number and the Prandtle number: xfd,t/D ≈ 0.05ReDPr, 
where the Prandtl number is defined as Pr = ν/α and α is the thermal 
diffusitivity.
For turbulent flow, xfd,t ≈ 10D.



Thermal Conditions

• For a fully developed pipe flow, the convection coefficient is a 
constant and is not varied along the pipe length.  (as long as all 
thermal and flow properties are constant also.)
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• Newton’s law of cooling: q”S = hA(TS-Tm)
Question: since the temperature inside a pipe flow is not constant, 
what temperature we should use.  A mean temperature Tm is 
defined.



Energy Transfer

Consider the total thermal energy carried by the fluid as

(mass flux) (internal energy)v
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Now image this same amount of energy is carried by a body of 
fluid with the same mass flow rate but at a uniform mean 
temperature Tm.  Therefore Tm can be defined as
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Consider Tm as the reference temperature of the fluid so that the 
total heat transfer between the pipe and the fluid is governed by the 
Newton’s cooling law as: qs”=h(Ts-Tm), where h is the local 
convection coefficient, and Ts is the local surface temperature.  
Note: usually Tm is not a constant and it varies along the pipe 
depending on the condition of the heat transfer.



Energy Balance

Example: We would like to design a solar water heater that can heat up the 
water temperature from 20° C to 50° C at a water flow rate of 0.15 kg/s.  The 
water is flowing through a 5 cm diameter pipe and is receiving a net solar 
radiation flux of 200 W per unit length (meter).  Determine the total pipe length 
required to achieve the goal.



Example (cont.)

Questions: (1) How do we determine the heat transfer coefficient, h?

There are a total of six parameters involving in this problem: h, V, D, ν, kf,
cp.  The last two variables are thermal conductivity and the specific heat of 
the water.  The temperature dependence is implicit and is only through the 
variation of thermal properties.  Density ρ is included in the kinematic
viscosity, ν=µ/ρ.  According to the Buckingham theorem, it is possible for 
us to reduce the number of parameters by three.  Therefore, the convection 
coefficient relationship can be reduced to a function of only three 
variables:

Nu=hD/kf, Nusselt number, Re=VD/ν, Reynolds number, and 
Pr=ν/α, Prandtle number.  

This conclusion is consistent with empirical observation, that is 
Nu=f(Re, Pr). If we can determine the Reynolds and the Prandtle numbers, 
we can find the Nusselt number, hence, the heat transfer coefficient, h.



Convection Correlations
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Laminar, fully developed circular pipe flow:

          Nu 4.36,    when q " constant, (page 543, ch. 10-6, ITHT)

          Nu 3.66,              when T constant, (page 543, ch. 10-6, ITHT)
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Fully developed, turbulent pipe flow:  Nu f(Re, Pr),

Nu can be related to Re & Pr experimentally, as shown.
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Empirical Correlations
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Dittus-Boelter equation: Nu 0.023Re Pr , (eq 10-76, p 546, ITHT)

where n 0.4 for heating (T T ), n 0.3 for cooling (T T ).

The range of validity: 0.7 Pr 160, Re 10, 000, / 10.
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Note: This equation can be used only for moderate temperature difference with all 
the properties evaluated at Tm.

Other more accurate correlation equations can be found in other references.  
Caution: The ranges of application for these correlations can be quite different.
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For example, the Gnielinski correlation is the most accurate 

among all these equations:
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All properties are calculated at T .



Example (cont.)
In our example, we need to first calculate the Reynolds number: water at 35°C, 
Cp=4.18(kJ/kg.K), µ=7x10-4 (N.s/m2), kf=0.626 (W/m.K), Pr=4.8.
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Re 4000, it is turbulent pipe flow.

Use the Gnielinski correlation, from the Moody chart, f 0.036, Pr 4.8
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Energy Balance

Question (2): How can we determine the required pipe length?
Use energy balance concept: (energy storage) = (energy in) minus (energy out).  
energy in = energy received during a steady state operation (assume no loss)
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Temperature Distribution
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From local Newton's cooling law:
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Question (3): Can we determine the water temperature variation along the pipe?

Recognize the fact that the energy balance equation is valid for 

any pipe length x:
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It is a linear distribution along the pipe
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Question (4): How about the surface temperature distribution?



Temperature variation for constant heat flux
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Note: These distributions are valid only in the fully developed region.  In the 
entrance region, the convection condition should be different.  In general, the 
entrance length x/D≈10 for a turbulent pipe flow and is usually negligible as 
compared to the total pipe length.

Constant temperature
difference due to the 
constant heat flux.


