Heisler Charts

General methodology for using the charts in chapter 9-2: Use a plane wall of thickness 2L as an example

• Use figure 9-13(a) to determine the midplane temperature as a function of time: $T_0=T(x=0,t)$ for given Biot number

• Use figure 9-13(b) to determine the temperature distribution $T(x,t^*)$ at a given point x and a given time t* by relating to the midplane temperature at the given time, $T_O(t^*)$. That is, to determine $(T(x,t^*)-T_\infty)/(T_O(t^*)-T_\infty)$ for given x/L using figure 9-13(b)

• Internal energy change should first be calculated: $Q_0 = \rho c V(Ti-T_{\infty})$. Based on this, the total heat transfer at a given time, Q, can be determined from figure 9-13(c) at a given Biot number by finding Q/Q₀. A new variable Bi² τ is used to represent the time variation.

Unsteady HT Example

A 2-m long 0.2-m-diameter steel cylinder (k=40 W/m.K, α =1×10⁻⁵ m²/s, ρ =7854 kg/m³, c=434 J/kg.K), initially at 400 C, is suddenly immersed in water at 50 C for quenching process. If the convection coefficient is 200 W/m².K, calculate after 20 minutes: (a) the center temperature, (b) the surface temperature, (c) the heat transfer to the water.

• L/D=2/0.2=10, assume infinitely long cylinder

• Check Lumped Capacitance Method (LCM) assumption: Bi= $h(r_0/2)/k=(200)(0.1)/2/40=0.25>0.1$, can not

use LCM, instead use Heisler charts.

• Redefine Bi=hr_o/k=0.5

Define Fourier number (Fo or
$$t$$
): $t = \frac{at}{r_0^2} = \frac{(10^{-5})(20)(60)}{(0.1)^2} = 1.2$

 $Bi^2 t = (0.5)^2 (1.2) = 0.3$

Example (cont.)

(a) The centerline temperature: Bi⁻¹=2, τ =1.2, from figure 9-14(a), $(T_0-T_\infty)/(T_i-T_\infty)=0.38$, $(T_i-T_\infty)=400-50=350$ Center line Temp. T_0 (t=20 min.)=(0.38)(350)+50=183° C.

Example (cont.)

(b) The surface temperature should be evaluated at $r/r_0=1$, for Bi⁻¹=2, $(T-T_{\infty})/(T_0-T_{\infty})=0.78$ from figure 9-14(b)

$$\frac{T - T_{\infty}}{T_i - T_{\infty}} = \frac{T - T_{\infty}}{T_o - T_{\infty}} \frac{T_o - T_{\infty}}{T_i - T_{\infty}}$$
$$= (0.78)(0.38) = 0.296$$

 $T(r = r_o, t = 20 \text{min.})$ = 50 + (0.296)(350) = 153.6°C

Example (cont.)

(c) Total heat transfer: $\text{Bi}^2 t = 0.3$, Bi = 0.5, From figure 9-14(c), $Q/Q_0 = 0.6$, $Q_0 = \mathbf{r}cV(T_i - T_\infty) = 3.75 \times 10^8 (J)$ $Q = (0.6)(3.75 \times 10^8) = 2.25 \times 10^8 (J)$

