
Pipe Flow Example 

Water flows steadily into the circular pipe with a uniform inlet velocity profile as 
shown.  Due to the presence of viscosity, the velocity immediately adjacent to the 
inner pipe wall becomes zero and this phenomenon is called the no-slip boundary 
condition.  It is found out that the velocity distribution reaches a parabolic profile 
at a distance downstream of the entrance and can be represented as 
V1(r)=Vmax[1-(r/R)2], where Vmax is the velocity at the center of the pipe and r is 
the radial distance measured away from the center axis.  Use the mass 
conservation equation, determine Vmax.
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Mass conservation: V dA 0
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V dA 0, since V & dA are in the same direction
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0, steady state



Momentum Conservation

Assume there is no significant forces acting between the pipe and the fluid 
except the pressure forces normal to the pipe inlet (PO) and the section 1 (P1).  
Use linear momentum conservation equation, estimate the pressure difference 
between these two sections in order to accelerate the velocity profile inside the 
pipe from the inlet to a parabolic profile at section 1.  Assume the pressure is 
uniform both at the inlet and section 1.
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Momentum conservation: F (V dA)
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Momentum Conservation (cont.)
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