
Governing Equations in Differential Form

Very often, we would like to examine the detailed variation of a fluid flow 

field instead of just evaluating the integral effects.  For example, local flow 

behavior near the solid surface determines both the convective heat transfer 

and the skin friction between the surface and the fluid.

In these situations, governing equations in a differentil form are needed:

The integral formula such as the mass
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 conservation equation: 

V dA 0 is still valid.  However, it has to be evaluated inside 

an infinitesimal element in order to be able to predict the local flow behavior.
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• Take the limit such that the control volume approach to infinitesimal small:  
consequently, all fluid properties within the volume can be considered 
constant.
• Use the divergence theorem to convert the surface integration term into a 
volume integration term: 
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Continuity Equation

CS

V dA 0

( ) 0 using divergence theorem

Also, taking the CV to the limit of infinitesimally samll

( ) 0  this is the continuity equation (mass conservation)
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Physical Interpretation
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Consider two dimensional flow: 0,  on a small fluid CV x y
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Situation 1: 0, ( ) ( )

More fluid leaving CV than entering

along the x -direction, therefore, there

should be more fluid entering than

leaving along the y-direction.
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Situation 2: 0, ( ) ( ). More fluid entering CV than leaving

along the x -direction, therefore, there should be more fluid leaving than

v
entering along the y-direction.   v(y) v(y y): 0
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 situations should satisfy 0,  mass conservation
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Example (suction boundary layer control)

A laminar boundary layer can be approximated as having a velocity profile 
u(x)=Uy/δ, where δ=cx1/2, c is a constant, U is the freestream velocity, and δ is 
the boundary layer thickness.  Determine the v(vertical component) of the 
velocity inside the boundary layer. 

δ(x)=cx1/2

As the boundary layer grows downstream, the u-velocity is slowed down

by the presence of viscous effect and the no-slip condition at

the solid surface.   In order to satisfy the mass conservation equati
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on, the

v-velocity should be positive and removing the fluid away from the 

boundary layer.
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Example (cont.)
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Uy
Integrate the v with respect to y: v

4cx 4 4

The velocity ratio: v/u y/4x increases away from the surface at a fixed x

position;it decreases  further downstream at a fixed 
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y location.

At the edge of the boundary layer y cx , /
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It also decreases further downstream.
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