Numerical Methods

Due to the increasing complexities encountered in the devel opment
of modern technology, analytical solutions usually are not available.
For these problems, numerical solutions obtained using high-speed
computer are very useful, especially when the geometry of the object
of interest isirregular, or the boundary conditions are nonlinear. In
numerical analysis, two different approaches are commonly used:
the finite difference and the finite element methods. In heat transfer
problems, the finite difference method is used more often and will be
discussed here. The finite difference method involves:

» Establish nodal networks

» Derivefinite difference approximationsfor the governing
eqguation at both interior and exterior nodal points

» Develop a system of simultaneous algebraic nodal equations
» Solve the system of equationsusing numerical schemes



The Nodal Networks

The basic ideais to subdivide the area of interest into sub-volumes
with the distance between adjacent nodes by Dx and Dy as shown.
If the distance between points is small enough, the differential
equation can be approximated locally by a set of finite difference
equations. Each node now represents a small region where the
nodal temperature is a measure of the average temperature of the
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Finite Difference Approximation
Heat Diffusion Equation: N2T + 3 = 11T

wherea =

IS the thermal diffusivity
r C.V

No generation and steady state: ¢=0 and % =0,p N°T =0

First, approximated the first order differentiation
at intermediate points (m+1/2,n) & (m-1/2,n)
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Finite Difference Approximation (cont.)

Next, approximate the second order differentiation at m,n
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Similarly, the approximation can be applied to
the other dimension y
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Finite Difference Approximation (cont.)
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To model the steady state, no generation heat equation; N°T =0

This approximation can be simplified by specify Dx=Dy

and the nodal equation can be obtained as
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This equation approximates the nodal temperature distribution based on
the heat equation. This approximation isimproved when the distance
between the adjacent nodal pointsis decreased.
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A System of Algebraic Equations

* The nodal equations derived previously are valid for all interior
points satisfying the steady state, no generation heat equation.
For each node, there is one such equation.

For example: for nodal point m=3, n=4, the equation is
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T34=(UA) (Tt Tyst T35+ Tgp)

. for exterior nodes (boundary conditions)
can be found in standard heat transfer textbooks. (ex. F.P.
Incropera& D.P. DeWitt, “Introduction to Heat Transfer”.)

 Derive one eguation for each nodal point (including both
Interior and exterior points) in the system of interest. Theresult is
asystem of N algebraic equations for atotal of N nodal points.



Matrix Form

The system of equations:
a11T1 + a12T2 +-- +a1NTN - Cl
a21T1 +a22T2 tee +a2NTN = Cz

aNlTl + aN2T2 Tt aNNTN = CN

A total of N algebraic equations for the N nodal points and the
system can be expressed as a matrix formulation: [A][T]=[C]

éall d, - Ay u éTl u éCl u
e U é+ U e~ U
~ ~ AT - =~ -
where A= ea?l a?Z a?N u,T:e.2 u,C:eCFu
e : u e: u e: u
e U 6_ U é. U
A1 Ay 0 Aw gTNCI = ONEY



Numerical Solutions

Matrix form: [A][T]=[C].

From linear algebra: [A]A][T]=[A]C], [T]=[A]*C]
where [A]l istheinverse of matrix [A]. [T] isthe solution
Vector.

e Matrix inversion requires cumbersome numerical computations
and is not efficient if the order of the matrix is high (>10)

» Gauss eimination method and other matrix solvers are usually
available in many numerical solution package. For example,
“Numerical Recipes’ by Cambridge University Press or their web
source at www.nr.com.

e For high order matrix, iterative methods are usually more
efficient. The famous Jacobl & Gauss-Seidel iteration methods
will be introduced in the following.



|teration
General algebraic eguation for nodal point:
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Rewrite the equation of the form:—| Replace (k) by (k-1)

C la jﬂqa]// for the Jacobi iteration
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o (k) - specify the level of the iteration, (k-1) means the present
level and (k) represents the new level.

« Aninitial guess (k=0) is needed to start the iteration.

By substituting iterated values at (k-1) into the equation, the
new values a iteration (k) can be estimated

 The iteration will be stopped when maxcT,(0-T.&Dz£e, where e
specifies a predetermined value of acceptable error



Example

Solve the following system of eguations using (a) the Jacobi
methos, (b) the Gauss Seidel iteration method.

é4 2 1luéXu éll Reorganize into new form:
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AX+2Y+7Z =11 Y = g+;X+O*Z
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(@) Jacobi method: use initial guess X0=Y0=270=],
stop when maxgXk-Xk-1 Yk-Yk-1 7k-7zk-1(£ 0.1
First iteration:

X1=(11/4) - (1/2)YO?- (1/4)Z° =2

Y1=(3/2) + (1/2)X° =2

Z1=4 - (1/2) X0 - (1/4)Y° = 13/4



Example (cont.)

Second iteration: use the iterated values X1=2, Y1=2 71=13/4
X2=(11/4) - (V2)Y1- (1/4)Z1 = 15/16

Y2=(3/2) + (1/2)X1 =5/2

Z2=4-(1/2) X1-(1/4)YL=5/2

Converging Process.
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Final solution [1.014, 2.02, 2.996]
Exact solution [1, 2, 3]



Example (cont.)

(b) Gauss-Seidel iteration: Substitute the iterated values into the
Iterative process Immediately after they are computed.

Useinitial guessX°’=Y°=27°=1
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First iteration: Xlzll 1(Y°)-%(Z°):@ Immedi ate substitution
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The iterated solution [1.009, 1.9995, 2.996] and it converges faster
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