
3.   Extended surface (a fin) heat transfer
Objectives : 
1. To examine heat transfer in a single cylindrical extended surface (a fin) in 

free and forced convection
2. To develop an understanding of fin effectiveness and the parameters 
which influence it.

The fin material generally has a high thermal conductivity which
is exposed to a flowing fluid.

Fins are often seen in electrical appliances and electronics such as on 
computer processors and power supplies and industrial applications
such as heat exchangers and substation transformers

Fins
Extended surfaces or Fins are generally used to enhance convective
heat transfer rate between a solid and the surrounding fluid.

Simply put: A fin extends the surface area of heat transfer.

Micro processor

fin
fan



Parabolic fin Cylindrical fin

Triangular fin Rectangular fin Trapezoidal fin

Fins – Different configurations



Within a fin, heat is transferred via conduction.

Heat transferred to surrounding via convection and radiation

In general, we would like the entire fin to be @ the base temperature

conduction
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+ radiation

Increased heat transfer Area, (πDL) instead of Ab

Ideal case, i.e. the entire fin 
is at the base temperature,
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Differential heat equation for a fin 

Assumptions (V. IMPORTANT)
1. Steady state
2. One dimensional
3. Uniform convective heat transfer

coefficient 
4. Constant thermal conductivity

Ac(x1) Ac(x2)

x

Ac(x1)

Q
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Ac(x) is cross sectional area
Heat conducted through this 

area inside the fin

dAs(x1) dAs(x2)

As(x) is surface area
Heat convected to ambience through this area

dx
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ks  thermal conductivity of solid

  011
2

2


















 TT

dx
dA

k
h

Adx
dT

dx
dA

Adx
Td s

sc

c

c

Will derive soon!



x

Q

dx

No heat generation
Steady state 
Radiation neglected

Energy balance will lead to
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Assume uniform cross sectional area, i.e  Ac is constant

SIMPLIFICATIONS
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Consider an infinite long fin
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x = 0,   T=Tb θ = Tb-T  = θb
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Need two BCs for x

Second BC → C1=0
First BC→C2= θb
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Effect of Boundary Conditions



(a) Heat transfer from an infinitely long fin
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How can we estimate the total Heat Transfer? 
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Fin effectiveness

• To use / or not use a fin?
• Need to compare q’fin with heat transfer without fin

• A parameter called fin effectiveness εf is defined 

as    

)( 


TThA
q

bc

fin
f

Substitute the appropriate qfin ( depends on B.Cs) and find εf

To justify the use of fin, εf >2

For an infinite long fin
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1. To increase εf , need to increase (k/h)

2. Increase P/Ac - i. e perimeter to cross sectional area ---use thin fins

3. Hence in heat exchanger, we this, closely packed thin fins

4. Fins should be used when/where h is small. Commonly used on
gas side of liquid-gas heat exchangers.

For an infinitely long fin

Which Paramters influence fin effectiveness and how?



Fin efficiency
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Where qmax = Theoretical maximum heat transfer if the entire fin is at the
Base temperature
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Other possible boundary condition at the tip 
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a) Convective BC at the tip
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θx=0 = θb

b) Adiabatic BC at the tip
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c) Prescribed temperature at the tip
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Your experiment

Constant 
Temperature
Bath (water)
T=constant

Tb T1 T2 T3 T4 T5 T6

1. Measure the free convection profile

Take steady state temperatures
(temp. should not vary w.r.t time)

T7

2. Measure the temperature profile at forced  
convection ambience ( use wind tunnel to  
change the wind speed)

How do you ensure that steady state conditions have been achieved?



Average convection coefficient h
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Non dimensional convective heat transfer
Coefficient 
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k is thermal conductivity of fluid and 
d is characteristic length, here it is diameter
of cylinder
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