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Input a polynomial matrix View a polynomial matrix

Compute the determinant of a 
polynomial matrix

Compute the roots of a polynomial 
matrix

Return to the main page

Input a 
polynomial 
matrix

Back to top

To input a polynomial matrix such as 

first input its coefficient matrices and degree

» P0 = [1 0; 0 1];

» P1 = [1 -1; 1 0];

» P2 = [0 0; 0 -2];

» degP = 2;

Next, juxtapose the coefficient matrices and pack the matrix in 
polynomial matrix format

» P = [P0 P1 P2];

» P = ppck(P,degP);

View a 
polynomial 
matrix

Back to top

Inspect the result

» P

P =
     1     0     1    -1     0      0     2
     0     1     1     0     0     -2     0
     0     0     0     0     0      0   NaN

The NaN in the bottom right corner indicates that P represents a 
polynomial matrix. The degree 2 has gone into the top right 
corner.

You get a better view of the polynomial matrix by displaying its 
coefficient matrices

» pshow(P)
            (2 x 2) polynomial matrix of degree 2.
    
     Coefficient matrix at power  0
     1     0
     0     1
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     Coefficient matrix at power  1
     1    -1
     1     0

     Coefficient matrix at power  2
     0     0
     0    -2

The best way to see small polynomial matrices is to use the pdp
command:

» pdp(P)
 
Columns 1 through 2

    1 + s     - s    
    s        1 - 2s^2

Compute the 
determinant 
of a 
polynomial 
matrix

Back to top

Now compute the determinant of P

» pdet(P)

ans =
     1     1    -1    -2      3
     0     0     0     0    NaN

The determinant is a polynomial of degree 3 (see the top right 
corner). Its coefficients appear in the first row. We see that the 
determinant is

Compute the 
roots of a 
polynomial 
matrix

Back to top

The roots of P, that is, the roots of the determinant, are also 
easily computed

» proots(ans)

ans =
     -0.6647 + 0.4011i
     -0.6647 - 0.4011i
      0.8295 

We may compute the roots directly from the polynomial matrix 
P (by a different, possibly more reliable algorithm than via the 
determinant) as

» proots(P)

ans =
     -0.6647 + 0.4011i
     -0.6647 - 0.4011i
      0.8295 

Back to the main page
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Polynomial 
matrix 
data 
structure

A polynomial matrix is a matrix whose entries are polynomials in an 
indeterminate variable, which we shall always denote as s. Alternatively, a 
polynomial matrix may be viewed as a polynomial whose coefficients are 
matrices. Thus we have 

More generally we express a polynomial matrix as

with n the degree of the polynomial matrix. To store the matrix we need to 
save the coefficients matrices. Because the only data structure that MATLAB 
version 4 knows is a matrix the Toolbox packs the coefficient matrices side by 
side in a single matrix like this

This way of string the matrix, however, leaves the degree and the number of 
columns ambiguous. A 3×15 packed matrix may represent a 3×3 polynomial 
matrix of degree 4, but also a 3×5 polynomial matrix of degree 2. To resolve 
this ambiguity an extra row and column are added, with the degree of the 
polynomial matrix in the top position of the extra column. The bottom entry of 
the extra column carries the NaN ("not a number") symbol to identify the 
matrix as a polynomial matrix. Thus, the polynomial matrix of the example is 
represented in MATLAB as

The partitioning is not stored by MATLAB but inferred from the degree 4 in 
the top right corner and the size of the matrix.

The implementation of some macros requires matrices with a negative degree. 
For this special situation we define the following format. Polynomials or 
polynomial matrices may have a negative degree equal to  (-Inf in 
MATLAB), but only if they are nonempty and identical to zero.
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We thus distinguish three types of matrices

l Constant matrices, stored in a regular MATLAB two-dimensional data 
structure 

l Polynomial matrices, stored in an extended data structure as explained 
l Negative degree matrices in the sense of the definition above. 

To identify a matrix a macro pinfo.m is needed. It returns the type of a 
MATLAB data structure besides information about the size.

Commands The following commands are available to pack, unpack and identify a 
polynomial matrix 

ppck Pack a matrix as a polynomial matrix

punpck Unpack a polynomial matrix

pinfo Identify the type of MATLAB data structure

Top

Revised on 1998-06-01
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Numerical methods for polynomial matrices

M. Sebek

Introduction

The algorithms that are used in the Polynomial Toolbox use different types of numerical techniques. 
They may be classified as follows: 

l methods based on equating indeterminate coefficients
l polynomial reduction based on elementary row and column operations 
l interpolation methods
l state space methods
l other methods 

To learn quickly how the first four of these methods work, scan some easy examples.

Example 1: Scalar linear polynomial equation

Consider solving the scalar polynomial equation of the form

with a, b and c given polynomials, for the unknown polynomials x and y.

For simplicity we assume that deg a = deg b = deg c = 2. Then whenever the equation is solvable 
there exists at least one solution x, y characterized by 

The equation may be solved by equating indeterminate coefficients, polynomial reduction or 
interpolation as described below. In the Polynomial Toolbox this job is done by macro xaybc. 

Example 2: Determinant of a polynomial matrix

For a simple 2×2 polynomial matrix of degree 2 

consider the computation of its determinant 

Note that  if and only if P is nonsingular. 

The determinant may be found by polynomial reduction, by interpolation or by state space methods
as described below. In the Polynomial Toolbox the computation of the determinant is handled by 
the macro pdet. 



Numerical methods for polynomial matrics  2/7

Equating indeterminate coefficients

Example 1 continued: Scalar linear polynomial equation. Let us see how the scalar linear 
polynomial equation may be handled by equating indeterminate coefficients. We begin by writing

where the coefficients are all know. Likewise, we write 

with the unknown coefficients to be determined.

Step 1. By expanding the expression xa + yb and equating coefficients of like powers in the 
indeterminate variable s we obtain a set of linear equations of the form 

The matrix S has a highly structured form and is called the Sylvester resultant matrix corresponding 
to the polynomials a and b.

Step 2. Solve the constant matrix equation to obtain the unknown coefficients of the polynomials x
and y and, hence, the polynomials themselves. If the set of linear equations is not solvable then the 
polynomial matrix has no solution either.

Equating indeterminate coefficients

Discussion. The procedure is quite natural. It applies whenever 

l the degree of the expected solution is known, and 
l the constant matrix system is linear, of a reasonable size and easily constructed. Then it may 

efficiently be solved by any standard numerically stable linear system solver. 

The knowledge of the resulting degree is here crucial: It guarantees that the correspondence 
between the polynomial equation and the linear system is one-to-one. 

If the degree is not known then it is necessary to proceed heuristically: Just try a large enough 
degree and check whether or not the resulting linear system is solvable. If it is then the desired 
polynomial solution has been found. But if it is not then nothing can be concluded. There may or 
may not exist polynomial solutions of higher degree. 
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In the Polynomial Toolbox, the equating indefinite coefficients methods is employed in equation 
solvers such as axb, axbyc, axybc, axxa2b.

For further reading see the references.

Polynomial reduction

Example 1 continued: Scalar linear polynomial equation. To solve the scalar linear polynomial 
equation by polynomial reduction we proceed as follows.

Step 1. Use the polynomials x and y to form the polynomial matrix 

Use elementary row operations to reduce the matrix until its lower left corner equals 0. After 
completion the matrix has the form 

The polynomial g is the greatest common divisor of a and b while p, q, r and t are coprime 
polynomials that satisfy 

Step 2. Extract g from the right hand side polynomial c to obtain a polynomial so that 

If this is not possible then stop because the polynomial equation is unsolvable.

Step 3. Take 

to be the desired solution. Moreover, all solutions to the polynomial equation may be expressed as 

with u an arbitrary free polynomial parameter.

Polynomial reduction
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Example 2 continued: Computation of the determinant. To compute the determinant of the 
polynomial matrix P by polynomial reduction we proceed this way.

Step 1. Using elementary row operations, transform the given matrix P into a lower triangular 
matrix of the form 

Step 2. Because elementary operations preserve the determinant the desired result may immediately 
be calculated as 

Polynomial reduction

Discussion. This is a traditional method of real "polynomial flavor." A typical feature of this 
method is that no attention is paid to the degree of the polynomials, which may grow alarmingly 
during the computation. 

Unfortunately, the method is not numerically stable and, if the given data are "bad" then the 
performance of the method heavily depends on effective zeroing. 

Finally, the method turns out to be rather slow when programmed in MATLAB. 

In the Polynomial Toolbox polynomial reductions are employed in the functions pstairs, hermite, 
smith, exfac, gld, axb, axbyc, axybc and others.

When running some of these macros you may enjoy watching animations activated by option 
'movie'. 

For further reading see the references.

Interpolation

Example 1 continued: Linear polynomial equation. The "interpolation way" to determine the 
unknown polynomials x and y from the equation ax + by = c consists of the following steps.

Step 1. For the problem at hand, choose four distinct complex interpolation points 

and substitute them into the polynomials a, b and c to obtain scalar constants 

Step 2. Form the linear equation system 
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Step 3. Solve the equation system for the desired coefficients of the polynomials x and y.

Interpolation

Example 2 continued. Computation of the determinant. Quite similarly the determinant may be 
computed by interpolation.

Step 1. For the problem at hand, choose five distinct interpolation points 

substitute them into the given matrix P to obtain five constant matrices 

Step 2. Calculate the determinants 

Step 3. Recover the desired coefficients of 

by solving the linear equation system 

The matrix V is called a Vandermonde matrix.

Interpolation

Discussion. This technique for polynomial matrices is quite modern and efficient. Apparently, the 
larger part of computation is done within constant matrices the more efficient the method. 

Like other methods, it requires the resulting degrees to be correctly determined a priori. If no 
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justified guess is available then the method becomes quite heuristic. If an incorrect degree is 
assumed then neither does solvability of the linear equation system guarantee the existence of a 
solution to the polynomial solution nor implies unsolvability of the linear system the non-existence 
of a solution to the polynomial problem. 

The Vandermonde matrix appearing in the linear equation system often is ill conditioned. In many 
cases, this does not matter as a special "Vandermonde solver" may be employed. If this is not 
possible then the condition number limits the problem size. 

In the Polynomial Toolbox the interpolation method may be encountered in pdet, axb, axbyc, 
axxa2bc and pjsf. 

For further reading see the references.

State space methods

Example 2 continued. Computation of the determinant. To compute the determinant an indirect 
method may be used based on "state space" notions from linear system theory.

Step 1. From the matrix coefficients of 

form the pair of generalized block companion matrices 

This pair may be considered to define a descriptor system .

Step 2. Compute the generalized eigenvalues corresponding to the matrices E, A, that is, the roots 
of . Remove the infinite roots and denote the remaining finite roots as 

They equal the finite roots of p(s).

Step 3. Recover p(s) = det P(s) from its finite roots using the formula 

State space methods

Discussion. There are state space counterparts to many polynomial problems. As quite advanced 
numerical procedures have been developed for state-space problems the detour via systems theory 
is sometimes rewarding. 

In the Polynomial Toolbox, state-space-like methods may be found in proot, pdet and pjsf. 
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For further reading see the references.
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Macro 
names

Many macro names in the toolbox are prefixed with the 
character p. Where possible existing MATLAB names for 
corresponding non-polynomial operations follows the prefix 
character.

Heading The heading of each m-file contains a short description of the 
macro and all input and output variables. It serves as a help 
message when invoking the help facility of MATLAB.

Usage If in the call of a macro the wrong number of input variables is 
specified the execution of the macro stops and a message is 
returned indicating the proper calling convention of the macro.

Tolerances If the proper functioning of a macro depends on certain 
tolerance values, the user may specify these values as input 
parameters to the macro. In case these input parameters are not 
given a value, default values are substituted depending on the 
value of the permanent variable eps in MATLAB.

Method If there are more methods available to do a specific job, only one 
macro is provided that incorporates all the different methods. A 
choice of the method is possible by defining the appropriate 
input parameter method. The default value for this input 
parameter is the "overall best" algorithm available.

Revised on 1998-06-01
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Polynomial 
matrices

Index | Top

We review some definitions and basic facts related to polynomial matrices. 

A k×m polynomial matrix is a matrix of the form

where s is an indefinite variable (usually taking its values in the comple
constant matrices

coefficient matrices. Usually, unless stated otherwise, we deal with rea
whose coefficient matrices are real. 

If  is not the zero matrix then we say that P has degree n. If  is th
said to be monic.

Tall and 
wide

A polynomial or other matrix is tall if it has at least as many rows as c
at least as many columns as rows.

Rank

Index | Top

A polynomial matrix P has full column rank (or full normal column ra
rank everywhere in the complex plane except at a finite number of points. Similar definitions 
hold for full row rank and full rank.

The normal rank of a polynomial matrix P equals

Similar definitions apply to the notions of normal column rank and nor

A square polynomial matrix is nonsingular if it has full normal rank.

Row and 
column 
degrees

Index | Top

Let the elements of the k×m polynomial matrix P be 

Then the numbers

are the row and the column degrees of P, respectively.

Leading Suppose that P has column and row degrees 
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coefficient 
matrices

Index | Top

respectively.

The column leading coefficient matrix of P is the constant matrix who
coefficient of the term with power  of the (i, j) entry of P.

The row leading coefficient matrix of P is the constant matrix whose (
coefficient of the term with power  of the (i, j) entry of P.

Column and 
row reduced

A polynomial matrix is column reduced if its column leading coefficient matrix has full column 
rank. It is row reduced if its row leading coefficient matrix has full row rank.

Conjugate

Index | Top

If P is a polynomial matrix then its conjugate P* is the polynomial matrix defined by 

The superscript H indicates the complex conjugate transpose.

Para-
Hermitian

A square polynomial matrix P is para-Hermitian if P* = P.

Diagonally 
reduced

Index | Top

The m×m para-Hermitian polynomial matrix P is diagonally reduced i
degrees  so that the diagonal leading coefficient matrix

exists and is nonsingular. D is the diagonal polynomial matrix

Roots

Index | Top

The roots or zeros of a polynomial matrix P are those points in the com
rank. 

If P is square then its roots are the roots of its determinant det P, inclu

Primeness A polynomial matrix P is left prime if it has full row rank everywhere in the complex plane. It is 
right prime if it has full column rank everywhere in the complex plane.

Coprimeness

Index | Top

The N polynomial matrices  with the same numbers of row

is left prime. If the N polynomial matrices all have the same numbers of columns then they are 
right coprime if 
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is right prime.

Unimodular A square polynomial matrix U is unimodular if its determinant det U is a nonzero constant. The 
inverse of a unimodular polynomial matrix is again a polynomial matrix.

Matrix 
pencil

Index | Top

Matrix pencils are matrix polynomials of degree 1, such as 

Matrix pencils are often represented as polynomial matrices of the special form

but we shall normally consider matrix pencils as general polynomial ma

Elementary 
row and 
column 
operations

Index | Top

There are three basic elementary row operations: 

l multiplying a row by a nonzero constant, such as 

l interchanging two rows, such as 

l adding a polynomial multiple of one row to another, such as 

Elementary column operations are defined analogously.

Diophantine 
equations

Index | Top

The simplest type of linear scalar polynomial equation - called Diophantine equation after by the 
Alexandrian mathematician Diophantos (A.D. 275) is 

The polynomials polynomials a, b and c are given while the polynomia
The equation is solvable if and only if the greatest common divisor of a
implies that with relatively a and b coprime the equation is solvable for any right hand side 
polynomial, including c = 1.

The Diophantine equation possesses infinitely many solutions wheneve
is any (particular) solution, then the general solution is
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where t is an arbitrary polynomial (the parameter) and are coprime polynomials such that 

If the a and b themselves are coprime then one can naturally take 

Among all the solutions of Diophantine equation there exists a unique 
characterized by

There is another (generally different) solution pair characterized by

The two solution pairs coincide only if

Bézout 
equations

Index | Top

A Diophantine equation with 1 on its right hand side is called a Bézout equation. It may look 
like 

with a and b given polynomials and x and y unknown.

Zeroing

Index | Top

Theoretically, the degree of a polynomial 

is n whenever . In numerical computations, however, one often 
very small (much smaller than the other coefficients) yet non-zero.

By way of example, consider two simple polynomials 

where  is almost (but not quit) zero. When computing the difference

a question on its degree may arise. It is necessary to compare  with the norms of the other 
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coefficients to decide whether or not the corresponding term should be completely deleted. This 
process is called zeroing. The performance of many algorithms for polynomial problems 
critically depends on the way zeroing is done, in particular when eleme

Sylvester 
resultant 
matrix

Index | Top

The Sylvester resultant matrix corresponding to the polynomials 

is the (m+n)×(m+n) constant matrix

The resultant matrix is nonsingular if and only if the polynomials a and

Divisors and 
multiples

Index | Top

Consider polynomials a, b and c such that a = bc. We say that b is a d
multiple of b, and write b|a. This is sometimes also stated as b divides 

If a polynomial g divides both a and b then g is called a common diviso
furthermore, g is a multiple of every common divisor of a and b then g
divisor of a and b. If the only common divisors of a and b are constant
and b are coprime.

If a polynomial m is a multiple of both a and b then m is called a comm
furthermore, m is a divisor of every common multiple of a and b then it is a least common 
multiple of a and b.

Next consider now polynomial matrices A, B and C of compatible size
say that B is a left divisor of A or A is a right multiple of B.

If a polynomial matrix G is a left divisor of both A and B then G is called a common left divisor 
of A and B. If, furthermore, G is a right multiple of every common left
is a greatest common left divisor of A and B. If the only common left d
unimodular matrices then the polynomial matrices A and B are left cop

If a polynomial matrix M is a right multiple of both A and B then M is called a common right 
multiple of A and B. If, furthermore, L is a left divisor of every commo
right multiple of A and B then G is a least common right multiple of A 

Right divisors, left multiples, common right divisors, greatest common right divisors, common 
left multiples, and least common left multiples are similarly defined.

Index

Bézout equations elementary row and column 
operations

prime
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