Page 139, \#13(a)

1 p139, \#13(a), §1 Asked

Asked: Draw the graph of

$$
\begin{equation*}
x y=\left(x^{2}-9\right)^{2} \tag{1}
\end{equation*}
$$

2 p139, \#13(a), §2 Graph

$$
\begin{equation*}
x y=\left(x^{2}-9\right)^{2} \tag{2}
\end{equation*}
$$

Instead of starting to crunch numbers, look at the pieces first:
Factor $x^{2}-9=(x-3)(x+3)$ is a parabola with zeros at $x= \pm 3$:

Squaring gives a quartic with double zeros at $x= \pm 3$:

Dividing by x will produce a simple pole at $x=0$ and also a sign change at negative x :

Function $y(x)$:

- has an x-extent $x \neq 0$ and a y-extend $-\infty<y<\infty$;
- is odd (symmetric with respect to the origin);
- has a relative maximum at -3 of finite curvature: $y \propto(x+3)^{2}$;
- has a relative minimum at 3 of finite curvature: $y \propto(x-3)^{2}$;
- has a vertical asymptote at $x=0$ with asymptotic behavior: $y \sim 81 / x$ for $|x| \rightarrow 0$;
- behaves asymptotically as $y \sim x^{3}$ for $|x| \rightarrow \infty$;
- is concave up for $x>0$, down for $x<0$

3 p139, \#13(a), §3 Alternate

$$
y=\frac{\left(x^{2}-9\right)^{2}}{x}
$$

Hence

- intercepts with x-axis are at $x= \pm 3$;
- no intercepts with the y axis;
- y is an odd function of x (symmetric about the origin);
- for $x \downarrow 0, y \rightarrow \infty$ (vertical asymptote);
- for $x \uparrow 0, y \rightarrow-\infty$ (singularity is an odd, simple pole);
- for $x \rightarrow \pm \infty, y \sim x^{3} \rightarrow \pm \infty$.

$$
y^{\prime} \equiv \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\left(x^{2}-9\right)\left(3 x^{2}+9\right)}{x^{2}}
$$

Hence,

- $y^{\prime}>0$ for $-\infty<x<-3$ (y increases from $-\infty$);
- $y^{\prime}=0$ for $x=-3$ (local maximum, $y=0$);
- $y^{\prime}<0$ for $-3<x<0$ (y decreases towards $-\infty$);
- $y^{\prime}=-\infty$ for $x=0$ (singular point, vertical asymptote);
- $y^{\prime}<0$ for $0<x<-3$ (decreases from ∞);
- $y^{\prime}=0$ for $x=3$ (local minimum, $y=0$);
- $y^{\prime}>0$ for $3<x<\infty$ (increases to ∞).

Also,

- $y^{\prime} \rightarrow \infty$ when $x \rightarrow \pm \infty$ (no horizontal or oblique asymptotes);
- all derivatives exist, except at $x=0$, which has no point on the curve (no corners, cusps, infinite curvature, or other singular points);
- probably no inflection points.

$$
y^{\prime \prime}=\frac{6 x^{4}+162}{x^{3}}
$$

Hence

- really no inflection points (since there is no point at $x=0$);
- cocave downward for $x<0$, upward for $x>0$.

Hence the x - and y-extends as before.

