Introduction

Multiple integrals:

- Areas (cost, ...):

$$
\mathrm{d} A=\mathrm{d} x \mathrm{~d} y \quad \mathrm{~d} A=\rho \mathrm{d} \rho \mathrm{~d} \theta
$$

- Volumes (weight, ...):

$$
\mathrm{d} V=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z \quad \mathrm{~d} V=\rho \mathrm{d} \rho \mathrm{~d} \theta \mathrm{~d} z \quad \mathrm{~d} V=r^{2} \sin \phi \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} \theta
$$

- Centroids (center of gravity, center of pressure, ...)

$$
\bar{x}=\int x \mathrm{~d} A / \int \mathrm{d} A \quad \bar{x}=\int x \mathrm{~d} V / \int \mathrm{d} V
$$

- Moments of inertia (solid body dynamics, center of pressure, ...)

$$
\begin{gathered}
I_{x}=\int y^{2} \mathrm{~d} A \quad I_{0}=\int x^{2}+y^{2} \mathrm{~d} A \\
I_{x}=\int y^{2}+z^{2} \mathrm{~d} V \quad I_{x y}=-\int x y \mathrm{~d} V
\end{gathered}
$$

- ...

Notes:

- Draw the region to be integrated over.
- When integrating, say $\iiint f(a, b, c) \mathrm{d} a \mathrm{~d} b \mathrm{~d} c$, you have to decide whether you want to do a, b, or c first.
- Usually, you do the coordinate with the easiest limits of integration first.
- If you decide to do, say, b first, $\left(\int_{b_{1}}^{b_{2}} f(a, b, c) \mathrm{d} b\right.$ first), the limits of integration b_{1} and b_{2} must be identified from the graph at arbitrary a and c, and are normally functions of a and $c: b_{1}=b_{1}(a, c), b_{2}=b_{2}(a, c)$.
- After integrating over, say, b, the remaining double integral should no longer depend on b in any way. Nor does the region of integration: redraw it without the b coordinate. Then integrate over the next easiest coordinate in the same way.

