
Page 528, #14(e)

1 p528, #14(e), §1 Asked

Asked: Find the centroid of the first-quadrant area bounded by x2
− 8y + 4 = 0 and x2 = 4y

and x = 0. (Slighty different from the book.)

2 p528, #14(e), §2 Region

3 p528, #14(e), §3 Approach

Integrate x first?

The integral would have to be split up into the light and dark areas since the lower boundary
of integration is x = 0 in the light region and x =

√

8y − 4 in the dark region.

Integrate y first!



The boundaries of integration will be

y1 = 1

4
x2 y2 = 1

8
x2 + 1

2

After integration over y, the remaining region of integration over x will be a line segment:

x1 = 0 x2 = 2

4 p528, #14(e), §4 Results
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where x is constant in the integration;
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For Aȳ =
∫
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∫ ∫
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