Page 528, \#14(e)

1 p528, \#14(e), §1 Asked

Asked: Find the centroid of the first-quadrant area bounded by $x^{2}-8 y+4=0$ and $x^{2}=4 y$ and $x=0$. (Slighty different from the book.)

2 p528, \#14(e), §2 Region

3 p528, \#14(e), §3 Approach

Integrate x first?

The integral would have to be split up into the light and dark areas since the lower boundary of integration is $x=0$ in the light region and $x=\sqrt{8 y-4}$ in the dark region.

Integrate y first!

The boundaries of integration will be

$$
y_{1}=\frac{1}{4} x^{2} \quad y_{2}=\frac{1}{8} x^{2}+\frac{1}{2}
$$

After integration over y, the remaining region of integration over x will be a line segment:

$$
x_{1}=0 \quad x_{2}=2
$$

$4 \mathrm{p} 528, \# 14(\mathrm{e}), \S 4$ Results

For $A=\int \mathrm{d} A=\iint \mathrm{d} x \mathrm{~d} y$:

$$
A=\int_{x=0}^{x=2}\left[\int_{y=\frac{1}{4} x^{2}}^{y=\frac{1}{2} x^{2}+\frac{1}{2}} \mathrm{~d} y\right] \mathrm{d} x
$$

$$
\begin{gathered}
=\int_{x=0}^{2}\left[\left.y\right|_{y=\frac{1}{4} x^{2}} ^{y=\frac{1}{8} x^{2}+\frac{1}{2}}\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left(\frac{1}{8} x^{2}+\frac{1}{2}\right)-\left(\frac{1}{4} x^{2}\right)\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left(\frac{1}{2}-\frac{1}{8} x^{2}\right] \mathrm{d} x=\frac{2}{3}\right. \\
x=27
\end{gathered}
$$

For $A \bar{x}=\int x \mathrm{~d} A=\iint x \mathrm{~d} x \mathrm{~d} y$:

$$
A=\int_{x=0}^{x=2}\left[\int_{y=\frac{1}{4} x^{2}}^{y=\frac{1}{8} x^{2}+\frac{1}{2}} x \mathrm{~d} y\right] \mathrm{d} x
$$

where x is constant in the integration;

$$
\begin{gathered}
=\int_{x=0}^{2}\left[\left.x y\right|_{y=\frac{1}{4} x^{2}} ^{y=\frac{1}{8} x^{2}+\frac{1}{2}}\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left(\frac{1}{8} x^{3}+\frac{1}{2} x\right)-\left(\frac{1}{4} x^{3}\right)\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left(\frac{1}{2} x-\frac{1}{8} x^{3}\right] \mathrm{d} x=\frac{1}{2}\right.
\end{gathered}
$$

Hence $\bar{x}=\frac{1}{2} / \frac{2}{3}=\frac{3}{4}$.

For $A \bar{y}=\int y \mathrm{~d} A=\iint y \mathrm{~d} x \mathrm{~d} y$:

$$
\begin{gathered}
A=\int_{x=0}^{x=2}\left[\int_{y=\frac{1}{4} x^{2}}^{y=\frac{1}{8} x^{2}+\frac{1}{2}} y \mathrm{~d} y\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left.\frac{1}{2} y^{2}\right|_{y=\frac{1}{4} x^{2}} ^{y=\frac{1}{2} x^{2}+\frac{1}{2}}\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\frac{1}{2}\left(\frac{1}{8} x^{2}+\frac{1}{2}\right)^{2}-\frac{1}{2}\left(\frac{1}{4} x^{2}\right)^{2}\right] \mathrm{d} x \\
=\int_{x=0}^{2}\left[\left(\frac{1}{8}+\frac{1}{16} x^{2}-\frac{3}{128} x^{2}\right] \mathrm{d} x=\frac{4}{15}\right.
\end{gathered}
$$

Hence $\bar{y}=\frac{4}{15} / \frac{2}{3}=\frac{2}{5}$.

