Page 510, \#24(a)

1 p510, \#24(a), §1 Asked

Given: $\vec{F}=x \hat{\imath}+2 y \hat{\jmath}+3 x \hat{k}$

Asked: The work done by this force going from O to C along (1) the connecting line; (2) the curve $x=t$, $y=t^{2}, z=t^{3}$; (3) path OABC.

2 p510, \#24(a), §2 Identification

Find the curl of the vector to see whether the three integrals are going to be the same:

$$
\nabla \times \vec{F}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & 2 y & 3 x
\end{array}\right|=\left(\begin{array}{c}
0 \\
-3 \\
0
\end{array}\right)
$$

Nonzero, so the integrals along the three paths need not be the same.

3 p510, \#24(a), §3 Solution

$$
\int_{O}^{C} \vec{F} \mathrm{~d} \vec{r}=\int_{O}^{C} x \mathrm{~d} x+2 y \mathrm{~d} y+3 x \mathrm{~d} z
$$

1. Along the line $y=x$ and $z=x$:

$$
\int_{x=0}^{1} 6 x \mathrm{~d} x=3
$$

2. Along the curve $x=t, y=t^{2}, z=t^{3}$:

$$
\int_{t=0}^{1} F_{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+F_{y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+F_{z} \frac{\mathrm{~d} z}{\mathrm{~d} t}=\int_{0}^{1} t \mathrm{~d} t+2 t^{2} 2 t \mathrm{~d} t+3 t 3 t^{2} \mathrm{~d} t=\frac{15}{4}
$$

3. Along OABC:

$$
\int_{x=0}^{1} x \mathrm{~d} x+\int_{y=0}^{1} 2 y \mathrm{~d} y+\int_{z=0}^{1} 31 \mathrm{~d} z=\frac{9}{2}
$$

