Page 369, \#14

1 p369, \#14, §1 Asked

Given: A particle moves along a curve described by

$$
\begin{equation*}
x=\frac{1}{2} t^{2} \quad y=\frac{1}{2} x^{2}-\frac{1}{4} \ln x \tag{1}
\end{equation*}
$$

Asked: The velocity and acceleration at $t=1$

2 p369, \#14, §2 Graphically

3 p369, \#14, §3 Position

At $t=1$:

$$
\begin{equation*}
x=\frac{1}{2} t^{2}=\frac{1}{2} \quad y=\frac{1}{2} x^{2}-\frac{1}{4} \ln x=0.298 \tag{2}
\end{equation*}
$$

hence

$$
\begin{equation*}
\vec{r}=\binom{0.5}{0.298}=0.5 \hat{\imath}+0.298 \hat{\jmath} \tag{3}
\end{equation*}
$$

4 p369, \#14, §4 Velocity

Velocity:

$$
\begin{equation*}
\vec{v}=\binom{\frac{\mathrm{d} x}{\mathrm{~d} t}}{\frac{\mathrm{~d} y}{\mathrm{~d} t}}=\binom{\frac{\mathrm{d} x}{\mathrm{~d} t}}{\frac{\mathrm{~d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t}}=\binom{t}{\left(x-\frac{1}{4} x^{-1}\right) t}=\binom{t}{\frac{1}{2} t^{3}-\frac{1}{2} t^{-1}} \tag{4}
\end{equation*}
$$

Velocity at $t=1$:

$$
\begin{equation*}
\vec{v}(1)=\binom{1}{0}=1 \hat{\imath}+0 \hat{\jmath}=\hat{\imath} \tag{5}
\end{equation*}
$$

Components at $t=1$:

$$
\begin{equation*}
v_{x} \equiv \frac{\mathrm{~d} x}{\mathrm{~d} t}=1 \quad v_{y} \equiv \frac{\mathrm{~d} y}{\mathrm{~d} t}=0 \tag{6}
\end{equation*}
$$

5 p369, \#14, §5 Graphically

6 p369, \#14, §6 Properties

Magnitude at $t=1$:

$$
\begin{equation*}
|\vec{v}|=v \equiv \frac{\mathrm{~d} s}{\mathrm{~d} t}=\sqrt{v_{x}^{2}+v_{y}^{2}}=1 \tag{7}
\end{equation*}
$$

Angle with the positive x-axis at $t=1$:

$$
\begin{equation*}
\tau=\arctan \frac{v_{y}}{v_{x}}=0(\text { not } \pi) \tag{8}
\end{equation*}
$$

7 p369, \#14, §7 Acceleration

Acceleration:

$$
\begin{equation*}
\vec{a}=\binom{\frac{\mathrm{d} v_{x}}{\mathrm{~d} t}}{\frac{\mathrm{~d} v_{y}}{\mathrm{~d} t}}=\binom{1}{\frac{3}{2} t^{2}+\frac{1}{2} t^{-2}} \tag{9}
\end{equation*}
$$

from (4).

Acceleration at $t=1$:

$$
\begin{equation*}
\vec{a}(1)=\binom{1}{2}=1 \hat{\imath}+2 \hat{\jmath} \tag{10}
\end{equation*}
$$

Components at $t=1$:

$$
\begin{equation*}
a_{x} \equiv \frac{\mathrm{~d} v_{x}}{\mathrm{~d} t}=1 \quad a_{y} \equiv \frac{\mathrm{~d} v_{y}}{\mathrm{~d} t}=2 \tag{11}
\end{equation*}
$$

8 p369, \#14, §8 Graphically

9 p369, \#14, §9 Properties

Magnitude at $t=1$:

$$
\begin{equation*}
|\vec{a}|=a=\sqrt{a_{x}^{2}+a_{y}^{2}}=\sqrt{5} \tag{12}
\end{equation*}
$$

Angle with the positive x-axis at $t=1$:

$$
\begin{equation*}
\phi=\arctan \frac{a_{y}}{a_{x}}=63^{\circ}\left(\operatorname{not} 243^{\circ}\right) \tag{13}
\end{equation*}
$$

Component tangential to the motion:

$$
\begin{equation*}
a_{t} \equiv \frac{\mathrm{~d} v}{\mathrm{~d} t} \equiv \frac{\mathrm{~d}^{2} s}{\mathrm{~d} t^{2}}=\frac{\vec{a} \cdot \vec{v}}{|\vec{v}|}=\frac{a_{x} v_{x}+a_{y} v_{y}}{|\vec{v}|}=1 \tag{14}
\end{equation*}
$$

Component normal to the motion:

$$
\begin{equation*}
a_{n} \equiv \frac{v^{2}}{R}=\sqrt{a^{2}-a_{t}^{2}}=2 \tag{15}
\end{equation*}
$$

