Page 127, \#30

1 p127, \#30, §1 Asked

Given: A free standing wall, located $3 \frac{3}{8} \mathrm{ft}$ from the side of a house.
Asked: What is the length ℓ of the shortest ladder that can reach the house (over the free standing wall).

2 p127, \#30, §2 Definition

Two degrees of freedom: say h and d
One inequality constraint: the ladder must be above the free standing wall.

3 p127, \#30, §3 Reduction

The shortest ladder hits the free standing wall:

One degree of freedom left: φ.

4 p127, \#30, §4 Further Reduction

At the minimum:

$$
\begin{equation*}
\frac{\mathrm{d} \ell}{\mathrm{~d} \varphi}=0 \tag{1}
\end{equation*}
$$

5 p127, \#30, §5 Finding l

First find a :

$$
\begin{equation*}
a=\frac{8}{\tan \varphi} . \tag{2}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\ell=\frac{3 \frac{3}{8}+a}{\cos \varphi}=\frac{3 \frac{3}{8}}{\cos \varphi}+\frac{8}{\sin \varphi} \tag{3}
\end{equation*}
$$

6 p127, $\# 30, \S 6$ Solving $l^{\prime}=0$

$$
\begin{gather*}
\frac{\mathrm{d} \ell}{\mathrm{~d} \varphi}=\frac{3 \frac{3}{8}}{\cos ^{2} \varphi} \sin \varphi-\frac{8}{\sin ^{2} \varphi} \cos \varphi=0 . \tag{4}\\
\frac{27}{8 \cos ^{2} \varphi} \sin \varphi=\frac{8}{\sin ^{2} \varphi} \cos \varphi \tag{5}\\
\tan ^{3} \varphi=\frac{64}{27} \Longrightarrow \quad \varphi_{\text {min }}=0.9273 \text { radians } \tag{6}
\end{gather*}
$$

7 p127, \#30, §7 Finding l

From (3)

$$
\begin{equation*}
\ell_{\min }=15.625 \mathrm{ft} \tag{7}
\end{equation*}
$$

