Page 461, \#27(a)

1 p461, \#27(a), §1 Asked

Given:

$$
\omega=\sqrt[3]{\frac{g}{b}}
$$

The maximum error in g is 1%, the maximum error in b is 0.5%.
Asked: The maximum percentage error in ω.

2 p461, \#27(a), §2 Identification

Given are the relative errors:

$$
\frac{\delta g}{g}=0.01 \quad \frac{\delta b}{b}=0.005
$$

Error manipulation rules:

1. During addition and substraction, add absolute errors;
2. During multiplication and division, add relative errors;
3. During exponentiation, multiply the relative error by the power.

3 p461, \#27(a), §3 Results

$$
\frac{\mathrm{d}(g / b)}{(g / b)}=\frac{b}{g}\left(\frac{b \mathrm{~d} g-g \mathrm{~d} b}{b^{2}}\right)=\frac{\mathrm{d} g}{g}-\frac{\mathrm{d} b}{b}
$$

Hence the greatest possible relative error in (g / b) is:

$$
\frac{\delta(g / b)}{(g / b)}=0.01+0.005
$$

(or use rule 2)

$$
\frac{\mathrm{d}(\sqrt[3]{g / b})}{(\sqrt[3]{g / b})}=\frac{1}{3} \frac{\mathrm{~d}(g / b)}{(g / b)}
$$

(or use rule 3)
Hence

$$
\frac{\delta \omega}{\omega}=0.005=0.5 \%
$$

