Page 461, \#29

1 p461, \#29, §1 Asked

Given: A circular cylinder of varying radius r and height h. At a given time, $r=6$ inch, $\dot{r}=0.2 \mathrm{in} / \mathrm{sec}, h=8 \mathrm{in}, \dot{h}=-0.4 \mathrm{in} / \mathrm{sec}$.

Asked: \dot{V} and \dot{A} at that time.

2 p461, \#29, §2 Solution

$$
\begin{gathered}
V=\pi r^{2} h \quad A=2 \pi r h+2 \pi r^{2} \\
\mathrm{~d} V=\frac{\partial V}{\partial h} \mathrm{~d} h+\frac{\partial V}{\partial r} \mathrm{~d} r \\
\dot{V}=\pi r^{2} \dot{h}+\pi 2 r h \dot{r}=15.08 \mathrm{in}^{3} / \mathrm{sec} \\
\dot{A}=2 \pi r \dot{h}+(2 \pi h+4 \pi r) \dot{r}=10.05 \mathrm{in}^{2} / \mathrm{sec}
\end{gathered}
$$

