Introduction

Vectors for geometry:

- straight line trajectories;
- surfaces;
- ...
- Dot (scalar) product:

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=|\vec{a}||\vec{b}| \cos \vartheta
$$

- Cross (vector) product:

$$
|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \vartheta
$$

and normal to both vectors. Seen from below:

- Line through point P parallel to vector \vec{s} :

$$
\vec{r}=\vec{r}_{P}+\lambda \vec{s}
$$

- Plane through point P normal to vector \vec{n} :

- Each equation ordinarily reduces the dimensionality by one: 3D (space) $\rightarrow 2 \mathrm{D}$ (plane) \rightarrow 1D (line) $\rightarrow 0 \mathrm{D}$ (point) \rightarrow nothing.

