Introduction

Vectors for geometry:

- straight line trajectories;
- surfaces;
- ...
- Dot (scalar) product:

$$\vec{a} \cdot \vec{b} = a_x b_x + a_y b_y + a_z b_z = |\vec{a}| |\vec{b}| \cos \vartheta$$

• Cross (vector) product:

$$|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \vartheta$$

and normal to both vectors. Seen from below:

• Line through point P parallel to vector \vec{s} :

 $\vec{r} = \vec{r}_P + \lambda \vec{s}$

• Plane through point P normal to vector \vec{n} :

• Each equation ordinarily reduces the dimensionality by one: 3D (space) \rightarrow 2D (plane) \rightarrow 1D (line) \rightarrow 0D (point) \rightarrow nothing.