Page 477, \#36(b)

$1 \quad \mathrm{p} 477, \# 36(\mathrm{~b}), \S 1$ Asked

Asked: The plane through point $P_{0},(2,-3,2)$, and the line $6 x+4 y+3 z+5=0,2 x+y+z-2=0$.

2 p477, \#36(b), §2 Identification

- I need a vector normal to the plane.
- I can get this by crossing two vectors in the plane.
- One such vector is $\vec{n}_{1} \times \vec{n}_{2}$.
- To find another, find any point Q on the line, then $r_{Q}-r_{P_{0}}$ is in the plane.

3 p477, \#36(b), §3 Solution

$$
6 x+4 y+3 z+5=0 \quad \Longrightarrow \quad \vec{n}_{1}=(6,4,3)
$$

$$
\begin{gathered}
2 x+y+z-2=0 \quad \Longrightarrow \quad \vec{n}_{2}=(2,1,1) \\
\vec{s}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
6 & 4 & 3 \\
2 & 1 & 1
\end{array}\right|=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)
\end{gathered}
$$

When $x=0$ on the line,

$$
4 y+3 z+5=0, \quad y+z-2=0 \quad \Longrightarrow \quad x=0, \quad y=-11, \quad z=13
$$

$$
\begin{aligned}
& \vec{n}=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right) \times\left[\left(\begin{array}{c}
0 \\
-11 \\
13
\end{array}\right)-\left(\begin{array}{c}
2 \\
-3 \\
2
\end{array}\right)\right] \\
&=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right) \times\left(\begin{array}{c}
-2 \\
-8 \\
11
\end{array}\right)=\left(\begin{array}{c}
-16 \\
-7 \\
-8
\end{array}\right) \\
&\left(\begin{array}{c}
16 \\
7 \\
8
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
16 \\
7 \\
8
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-3 \\
2
\end{array}\right)
\end{aligned}
$$

$$
16 x+7 y+8 z=27
$$

