6.47(a)

1 6.47(a), §1 Asked

Given: A new basis $S=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$. The new basis vectors can be expressed in terms of the original Cartesian basis $E=\{\hat{\imath}, \hat{\jmath}\}$ as $\left.\vec{u}_{1}\right|_{E}=(1,2)$ and $\left.\vec{u}_{2}\right|_{E}=(3,5)$.

Asked: Find (1) the change of basis matrix P from E to S; (2) the change of basis matrix Q from S to E; (3) the components $\left(a^{\prime}, b^{\prime}\right)$ of an arbitrary vector \vec{v} in the S basis if \vec{v} has components (a, b) in the Cartesian coordinate system $(\vec{v}=a \hat{\imath}+b \hat{\jmath}$)

2 6.47(a), §2 Solution

The basis vectors of the S-system are given in terms of the E-system, so, to get the transformation matrix, we simply put them as columns of the matrix:

$$
P \equiv\left(\left.\left.\vec{u}_{1}\right|_{E} \vec{u}_{2}\right|_{E}\right)=\left(\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right)
$$

Let's check this, just to be sure. The arbitrary vector \vec{v} can be expressed as

$$
\vec{v}=a \hat{\imath}+b \hat{\jmath}=a^{\prime} \vec{u}_{1}+b^{\prime} \vec{u}_{2}
$$

so

$$
\left.\vec{v}\right|_{E} \equiv\binom{a}{b}=\left.a^{\prime} \vec{u}_{1}\right|_{E}+\left.b^{\prime} \vec{u}_{2}\right|_{E}=\left(\left.\left.\vec{u}_{1}\right|_{E} \vec{u}_{2}\right|_{E}\right)\binom{a^{\prime}}{b^{\prime}}=\left.P \vec{v}\right|_{S}
$$

Since

$$
\left.\vec{v}\right|_{S}=\left.P^{-1} \vec{v}\right|_{E}
$$

the transformation matrix Q from S to E is

$$
Q=P^{-1}=\frac{1}{-1}\left(\begin{array}{cc}
5 & -3 \\
-2 & 1
\end{array}\right)=\left(\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right)
$$

So

$$
\binom{a^{\prime}}{b^{\prime}}=\left(\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right)\binom{a}{b}
$$

So $a^{\prime}=-5 a+3 b$ and $b^{\prime}=2 a-b$.

