6.48

1 6.48, §1 Asked

Given: A basis $S=\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ and another basis $S^{\prime}=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. The basis vectors of S can be expressed in terms of the Cartesian basis $E=\{\hat{\imath}, \hat{\jmath}\}$ as $\left.\vec{u}_{1}\right|_{E}=(1,2)$ and $\left.\vec{u}_{2}\right|_{E}=(2,3)$ and those of S^{\prime} as $\left.\vec{v}_{1}\right|_{E}=(1,3)$ and $\left.\vec{v}_{2}\right|_{E}=(1,4)$.

Asked: Find (a) the change of basis matrix P from S to S^{\prime}; (b) the change of basis matrix Q from S^{\prime} back to S.

2 6.48, §2 Solution

By definition, for any vector \vec{w},

$$
\left.\vec{w}\right|_{S}=\left.P \vec{w}\right|_{S^{\prime}}
$$

where P contains the basis vectors of the S^{\prime}-system in terms of the S-system. Unfortunately, these basis vectors are given in terms of the E-system, not the S-system.

Trick: go over the E system:

$$
\begin{aligned}
&\left.\left.\vec{w}\right|_{S^{\prime}} \Longrightarrow \vec{w}\right|_{E}\left.\Longrightarrow \vec{w}\right|_{S} \\
&\left.\vec{w}\right|_{E}=\left.\left.\left(\left.\left.\vec{v}_{1}\right|_{E} \vec{v}_{2}\right|_{E}\right) \vec{w}\right|_{S^{\prime}} \quad \vec{w}\right|_{E}=\left.\left(\left.\left.\vec{u}_{1}\right|_{E} \vec{u}_{2}\right|_{E}\right) \vec{w}\right|_{S}
\end{aligned}
$$

So

$$
\begin{gathered}
\left.\vec{w}\right|_{S}=\left.\left(\left.\left.\vec{u}_{1}\right|_{E} \vec{u}_{2}\right|_{E}\right)^{-1}\left(\left.\left.\vec{v}_{1}\right|_{E} \vec{v}_{2}\right|_{E}\right) \vec{w}\right|_{S^{\prime}} \\
P=\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{-1}\left(\begin{array}{ll}
1 & 1 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
-3 & 2 \\
2 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
3 & 4
\end{array}\right)=\left(\begin{array}{cc}
3 & 5 \\
-1 & -2
\end{array}\right) \\
Q=P^{-1}=\left(\begin{array}{cc}
2 & 5 \\
-1 & -3
\end{array}\right)
\end{gathered}
$$

