
Basis Changes

1 Simple example

Student request: change notations. Mine seem better than the book’s, though. I think the books
exposition (p207-210) is very confusing, partly by not using vector symbols to indicate vectors
versus coordinates. I suggest you stick with my exposition.

To solve problems, it is often desirable or essential to change basis.

As an example, consider the vector of gravity ~g. If I use a Cartesian coordinate system ı̂, ̂ with
the x-axis horizontal, the vector ~g will be along the negative y-axis. I will call this coordinate
system, (̂ı, ̂), the E-system.

Using the E-system, I can write the vector ~g as:

~g = 0ı̂ − ĝ or ~g
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In other words, the coordinates of vector ~g in the E-coordinate system are g1
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E
= −g.

But if, say, the ground is under an angle θ with the horizontal, it might be much more
convenient to use a coordinate system E∗, (̂ı∗, ̂∗), with the x-axis aligned with the ground:



In this new coordinate system, the coordinates of ~g will be different. With a bit of trig, you
see:

~g = −g sin(θ)̂ı∗ − g cos(θ)̂∗ or ~g
∣
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−g cos(θ)
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The coordinates of vector ~g are now g1

∣

∣

∣

E∗

= −g sin(θ) and g2
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= −g cos(θ)

What if I need to change the coordinates of a lot of vectors from one coordinate system to
the other? Is there a systematic way of doing this? The answer is yes; the following formula
applies:
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So the transformation of coordinates can be done by multiplying by a matrix P . This matrix
consists of the basis vectors of the new coordinate system E∗ expressed in terms of the old
coordinate system E.

In particular,

ı̂∗ = cos(θ)̂ı + sin(θ)̂ so ı̂∗
∣
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E
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cos(θ)
sin(θ)

)

̂∗ = − sin(θ)̂ı + cos(θ)̂ so ̂∗
∣
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E
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− sin(θ)
cos(θ)
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and matrix P becomes:

P =

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)

Let’s test it: P times the coordinates of vector ~g in the E∗-system should give the coordinates
in the E-system:

(

cos(θ) − sin(θ)
sin(θ) cos(θ)

) (

−g sin(θ)
−g cos(θ)

)

Multiplying out gives 0 and −g, which is exactly right.

Matrix P is called the transformation matrix from E to E∗. Note however that it really
transforms coordinates in the E∗-system to coordinates in the E-system. You just have to get
used to that language: a transformation matrix from A to B transforms B coordinates into A
coordinates. No, I do not know who thought of that first.



What if you really want to transform E coordinates into E∗ coordinates? No big deal: just
multiply by the inverse matrix P−1.

2 General

The basis vectors do not have to be orthogonal, as in the example. In general, suppose I have
a basis S, {~u1, ~u2, . . . , ~un}. Then any arbitrary vector ~w can be written as

~w = w1
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where w1|S, w2|S, . . . , wn|S are the coordinates of ~w in basis S. More briefly,
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Suppose I have another basis S ′, {~v1, ~v2, . . . , ~vn}. Then the same vector ~w can also be written
as

~w = w1

∣

∣

∣

S′

~v1 + w2

∣

∣

∣

S′

~v2 + . . . + wn

∣

∣

∣

S′

~vn

or

~w
∣

∣

∣

S′

=























w1

∣

∣

∣

S′

w2

∣

∣

∣

S′

...

wn

∣

∣

∣

S′























The relationship between the two sets of coordinates is always

~w
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S
= P ~w
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where P is a matrix that is called the transformation matrix from S to S ′. (Although it really
works the opposite way.)

Matrix P takes the form:

P =
(
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)

It contains the basis vectors of the S ′ system written in the S system. (That is why if I
multiply with P , I get a vector in the S system.)

To get the transformation the other way, use the matrix P−1.


