Basis Changes

1 Simple example

Student request: change notations. Mine seem better than the book's, though. I think the books exposition (p207-210) is very confusing, partly by not using vector symbols to indicate vectors versus coordinates. I suggest you stick with my exposition.

To solve problems, it is often desirable or essential to change basis.
As an example, consider the vector of gravity \vec{g}. If I use a Cartesian coordinate system $\hat{\imath}, \hat{\jmath}$ with the x-axis horizontal, the vector \vec{g} will be along the negative y-axis. I will call this coordinate system, $(\hat{\imath}, \hat{\jmath})$, the E-system.

Using the E-system, I can write the vector \vec{g} as:

$$
\vec{g}=0 \hat{\imath}-g \hat{\jmath} \quad \text { or }\left.\vec{g}\right|_{E}=\binom{0}{-g}
$$

In other words, the coordinates of vector \vec{g} in the E-coordinate system are $\left.g_{1}\right|_{E}=0$ and $\left.g_{2}\right|_{E}=-g$.

But if, say, the ground is under an angle θ with the horizontal, it might be much more convenient to use a coordinate system $E^{*},\left(\hat{\imath}^{*}, \hat{\jmath}^{*}\right)$, with the x-axis aligned with the ground:

In this new coordinate system, the coordinates of \vec{g} will be different. With a bit of trig, you see:

$$
\vec{g}=-g \sin (\theta) \hat{\imath}^{*}-g \cos (\theta) \hat{\jmath}^{*} \quad \text { or }\left.\vec{g}\right|_{E^{*}}=\binom{-g \sin (\theta)}{-g \cos (\theta)}
$$

The coordinates of vector \vec{g} are now $\left.g_{1}\right|_{E^{*}}=-g \sin (\theta)$ and $\left.g_{2}\right|_{E^{*}}=-g \cos (\theta)$
What if I need to change the coordinates of a lot of vectors from one coordinate system to the other? Is there a systematic way of doing this? The answer is yes; the following formula applies:

$$
\left.\vec{v}\right|_{E}=\left.P \vec{v}\right|_{E^{*}} \quad \text { with } P=\left(\left.\left.\hat{\imath}^{*}\right|_{E} \hat{\jmath}^{*}\right|_{E}\right)
$$

So the transformation of coordinates can be done by multiplying by a matrix P. This matrix consists of the basis vectors of the new coordinate system E^{*} expressed in terms of the old coordinate system E.

In particular,

$$
\left.\begin{aligned}
\hat{\imath}^{*}=\cos (\theta) \hat{\imath}+\sin (\theta) \hat{\jmath} & \text { so }
\end{aligned} \hat{\imath}^{*}\right|_{E}=\binom{\cos (\theta)}{\sin (\theta)}, ~ \begin{gathered}
\\
\hat{\jmath}^{*}=-\sin (\theta) \hat{\imath}+\cos (\theta) \hat{\jmath}
\end{gathered} \text { so }\left.\quad \hat{\jmath}^{*}\right|_{E}=\binom{-\sin (\theta)}{\cos (\theta)} ~ \$
$$

and matrix P becomes:

$$
P=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

Let's test it: P times the coordinates of vector \vec{g} in the E^{*}-system should give the coordinates in the E-system:

$$
\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{-g \sin (\theta)}{-g \cos (\theta)}
$$

Multiplying out gives 0 and $-g$, which is exactly right.
Matrix P is called the transformation matrix from E to E^{*}. Note however that it really transforms coordinates in the E^{*}-system to coordinates in the E-system. You just have to get used to that language: a transformation matrix from A to B transforms B coordinates into A coordinates. No, I do not know who thought of that first.

What if you really want to transform E coordinates into E^{*} coordinates? No big deal: just multiply by the inverse matrix P^{-1}.

2 General

The basis vectors do not have to be orthogonal, as in the example. In general, suppose I have a basis $S,\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$. Then any arbitrary vector \vec{w} can be written as

$$
\vec{w}=\left.w_{1}\right|_{S} \vec{u}_{1}+\left.w_{2}\right|_{S} \vec{u}_{2}+\ldots+\left.w_{n}\right|_{S} \vec{u}_{n}
$$

where $\left.w_{1}\right|_{S},\left.w_{2}\right|_{S}, \ldots,\left.w_{n}\right|_{S}$ are the coordinates of \vec{w} in basis S. More briefly,

$$
\left.\vec{w}\right|_{S}=\left(\begin{array}{c}
\left.w_{1}\right|_{S} \\
\left.w_{2}\right|_{S} \\
\vdots \\
\left.w_{n}\right|_{S}
\end{array}\right)
$$

Suppose I have another basis $S^{\prime},\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$. Then the same vector \vec{w} can also be written as

$$
\vec{w}=\left.w_{1}\right|_{S^{\prime}} \vec{v}_{1}+\left.w_{2}\right|_{S^{\prime}} \vec{v}_{2}+\ldots+\left.w_{n}\right|_{S^{\prime}} \vec{v}_{n}
$$

or

$$
\left.\vec{w}\right|_{S^{\prime}}=\left(\begin{array}{c}
\left.w_{1}\right|_{S^{\prime}} \\
\left.w_{2}\right|_{S^{\prime}} \\
\vdots \\
\left.w_{n}\right|_{S^{\prime}}
\end{array}\right)
$$

The relationship between the two sets of coordinates is always

$$
\left.\vec{w}\right|_{S}=\left.P \vec{w}\right|_{S^{\prime}}
$$

where P is a matrix that is called the transformation matrix from S to S^{\prime}. (Although it really works the opposite way.)

Matrix P takes the form:

$$
P=\left(\left.\left.\left.\vec{v}_{1}\right|_{S} \vec{v}_{2}\right|_{S} \ldots \vec{v}_{n}\right|_{S}\right)
$$

It contains the basis vectors of the S^{\prime} system written in the S system. (That is why if I multiply with P, I get a vector in the S system.)

To get the transformation the other way, use the matrix P^{-1}.

