Transforming Matrices

We saw that a transformation matrix P from an old basis S to new basis S^{\prime} transforms between $\vec{v}\left(=\left.\vec{v}\right|_{S}\right)$ and $\vec{v}^{\prime}\left(=\left.\vec{v}\right|_{S^{\prime}}\right)$ as:

$$
\vec{v}=P \vec{v}^{\prime} \text { or } \vec{v}^{\prime}=P^{-1} \vec{v}
$$

A square matrix A transforms similarly, but has in addition the inverse of the transformation matrix at the far right:

$$
A=P A^{\prime} P^{-1} \text { or } A^{\prime}=P^{-1} A P
$$

The need for two transformation matrices comes from the fact that a matrix provides a transformation of vectors. Given an "original vector" \vec{x}, multiplying by matrix A produces an "image vector" $\vec{y}=A \vec{x}$. When we change coordinates, one transformation matrix is needed to transform \vec{x}, the other to transform \vec{y} :

$$
\vec{y}^{\prime}=P^{-1} \vec{y}=P^{-1}(A \vec{x})=P^{-1} A P \vec{x}^{\prime}
$$

So the matrix that transforms \vec{x}^{\prime} into \vec{y}^{\prime} is $P^{-1} A P$.

