Transforming Matrices

We saw that a transformation matrix P from an old basis S to new basis S' transforms between $\vec{v} (= \vec{v}|_{S})$ and $\vec{v}' (= \vec{v}|_{S'})$ as:

 $\vec{v} = P\vec{v}'$ or $\vec{v}' = P^{-1}\vec{v}$

A square matrix A transforms similarly, but has in addition the inverse of the transformation matrix at the far right:

$$A = PA'P^{-1}$$
 or $A' = P^{-1}AP$

The need for two transformation matrices comes from the fact that a matrix provides a transformation of vectors. Given an "original vector" \vec{x} , multiplying by matrix A produces an "image vector" $\vec{y} = A\vec{x}$. When we change coordinates, one transformation matrix is needed to transform \vec{x} , the other to transform \vec{y} :

$$\vec{y}' = P^{-1}\vec{y} = P^{-1}(A\vec{x}) = P^{-1}AP\vec{x}'$$

So the matrix that transforms \vec{x}' into \vec{y}' is $P^{-1}AP$.