8.41(a)

1 8.41(a), §1 Asked

Asked:

$$\begin{vmatrix}
 1 & 2 & 2 & 3 \\
 1 & 0 & -2 & 0 \\
 3 & -1 & 1 & -2 \\
 4 & -3 & 0 & 2
 \end{vmatrix}$$

2 8.41(a), §2 Direct

Put in a checkerboard sign pattern (starting with +):

$$|A| = \begin{vmatrix} 1^+ & 2^- & 2^+ & 3^- \\ 1^- & 0^+ & -2^- & 0^+ \\ 3^+ & -1^- & 1^+ & -2^- \\ 4^- & -3^+ & 0^- & 2^+ \end{vmatrix}$$

Select a row (or a column) and expand in signs, coefficients, and minors. Here the second row may be best:

$$|A| = -(1) \begin{vmatrix} 2 & 2 & 3 \\ -1 & 1 & -2 \\ -3 & 0 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & 2 & 3 \\ 3 & -1 & -2 \\ 4 & -3 & 2 \end{vmatrix}$$

Repeat for each of the smaller determinants until the determinants are small enough to be directly written out, eg,

$$|a| = a \qquad \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

$$\begin{vmatrix} a & b & c \\ d & \not \sim &$$

3 8.41(a), §3 Elimination

$$|A| = \begin{vmatrix} 1 & 2 & 2 & 3 \\ 1 & 0 & -2 & 0 \\ 3 & -1 & 1 & -2 \\ 4 & -3 & 0 & 2 \end{vmatrix}$$
 (1) (2) (3) (4)

Interchange rows:

$$-|A| = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 1 & 2 & 2 & 3 \\ 3 & -1 & 1 & -2 \\ 4 & -3 & 0 & 2 \end{vmatrix}$$

$$(1') = (2)$$

$$(2') = (1)$$

$$(3)$$

$$(4)$$

Substract multiples of the first equation from the rest:

$$-|A| = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & 2 & 4 & 3 \\ 0 & -1 & 7 & -2 \\ 0 & -3 & 8 & 2 \end{vmatrix}$$

$$(1')$$

$$(2'') = (2') - (1')$$

$$(3') = (3) - 3(1')$$

$$(4') = (4) - 4(1')$$

Interchange the second and third equations:

$$|A| = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & -1 & 7 & -2 \\ 0 & 2 & 4 & 3 \\ 0 & -3 & 8 & 2 \end{vmatrix}$$

$$(1')$$

$$(2''') = (3')$$

$$(3'') = (2'')$$

$$(4') = (4) - 4(1')$$

Substract multiples of the second equation from the rest:

$$|A| = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & -1 & 7 & -2 \\ 0 & 0 & 18 & -1 \\ 0 & 0 & -13 & 8 \end{vmatrix}$$

$$(1')$$

$$(2''')$$

$$(3''') = (3'') + 2(2''')$$

$$(4'') = (4') - 3(2''')$$

Replace the fourth equation by a combination of the fourth and third:

$$18|A| = \begin{vmatrix} 1 & 0 & -2 & 0 \\ 0 & -1 & 7 & -2 \\ 0 & 0 & 18 & -1 \\ 0 & 0 & 0 & 131 \end{vmatrix}$$

$$(1')$$

$$(2''')$$

$$(3''')$$

$$(4''') = 18(4'') + 13(3''')$$

The determinant of a triangular matrix is the product of the elements on the main diagonal:

$$18|A| = (1)(-1)(18)(131) \implies |A| = -131$$