9.47

1 9.47(a), §1 Asked

Given:

$$
A=\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)
$$

Asked: All eigenvalues and linearly independent eigenvectors.

2 9.47(a), §2 Solution

Eigenvalues:

$$
|A-\lambda I|=\left|\begin{array}{cc}
5-\lambda & 6 \\
-2 & -2-\lambda
\end{array}\right|=\lambda^{2}-3 \lambda+2=0
$$

There are two roots: $\lambda_{1}=1$ and $\lambda_{2}=2$
The eigenvector corresponding to λ_{1} satisfies

$$
\left(A-\lambda_{1} I\right) \vec{v}_{1}=0=\left(\begin{array}{cc}
5-1 & 6 \\
-2 & -2-1
\end{array}\right) \vec{v}_{1}
$$

Solving using Gaussian elimination:

$$
\left(\begin{array}{rr|r}
4 & 6 & 0 \\
-2 & -3 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{cc|c}
\begin{array}{|c|}
4 \\
0
\end{array} & 6 & 0 \tag{1}\\
0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=2(2)+(1)
\end{aligned}
$$

Equation (1) gives $v_{1 x}=-\frac{3}{2} v_{1 y}$. In order to get a vector, instead of a set of possible vectors, one component must be arbitrarily chosen. Remember: undetermined constants in eigenvectors are not allowed. To get simple numbers, take $v_{1 y}=-2$, then $v_{1 x}=3$:

$$
\vec{v}_{1}=\binom{3}{-2}
$$

Check:

$$
A \vec{v}_{1} \stackrel{?}{=} \lambda_{1} \vec{v}_{1} \quad\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)\binom{3}{-2}=\binom{3}{-2}
$$

Note: the null space of the matrix above is

$$
\binom{v_{1 x}}{v_{1 y}}=\binom{-\frac{3}{2}}{1} v_{1 y}
$$

so $\left(-\frac{3}{2}, 1\right)$ would also have been an acceptable eigenvector, just messier.
The eigenvector corresponding to λ_{2} satisfies

$$
\left(A-\lambda_{2} I\right) \vec{v}_{2}=0=\left(\begin{array}{cc}
5-2 & 6 \\
-2 & -2-2
\end{array}\right) \vec{v}_{1}
$$

Solving using Gaussian elimination:

$$
\left(\begin{array}{rr}
3 & 6 \\
-2 & -4
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{ll}
3 & 6 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=3(2)+2(1)
\end{aligned}
$$

Choosing $v_{2 y}=1$, then $v_{2 x}=-2$:

$$
\vec{v}_{2}=\binom{-2}{1}
$$

3 9.47(b), §1 Asked

Given:

$$
A=\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)
$$

with eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=1, \vec{v}_{1}=\binom{3}{-2} \quad \lambda_{2}=2, \vec{v}_{2}=\binom{-2}{1}
$$

Asked: A matrix P such that $A^{\prime}=P^{-1} A P$ is diagonal.

4 9.47(b), §2 Solution

- The matrix $P^{-1} A P$ is the new matrix A^{\prime} after a basis transformation described by a transformation matrix P.
- To get A^{\prime} diagonal, we want to take the new basis to be the eigenvectors \vec{v}_{1} and \vec{v}_{2} of A.
- A transformation matrix consists of the new basis vectors expressed in terms of the old basis, so:

$$
P=\left(\vec{v}_{1} \vec{v}_{2}\right)=\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)
$$

Check:

$$
\begin{gathered}
A^{\prime}=P^{-1} A P=\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)^{-1}\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right) \\
=\frac{1}{-1}\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{T}\left(\begin{array}{rr}
3 & -4 \\
-2 & 2
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
\end{gathered}
$$

5 9.47(c), §1 Asked

Given:

$$
A=\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)
$$

with eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=1, \vec{v}_{1}=\binom{3}{-2} \quad \lambda_{2}=2, \vec{v}_{2}=\binom{-2}{1}
$$

Asked: A^{6} and $A^{4}-5 A^{3}+7 A^{2}-2 A+5$

6 9.47(c), §2 Solution

Do it first in the eigenvector basis!

$$
A^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad \Longrightarrow \quad A^{\prime 6}=\left(\begin{array}{ll}
1^{6} & 0 \\
0 & 2^{6}
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
0 & 64
\end{array}\right)
$$

This works for diagonal matrices only.
Now transform back:

$$
\begin{aligned}
& A^{6}=P A^{\prime 6} P^{-1}=\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & 64
\end{array}\right)\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)^{-1} \\
& A^{6}=\left(\begin{array}{rr}
3 & -128 \\
-2 & 64
\end{array}\right) \frac{1}{-1}\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{T}=\left(\begin{array}{rr}
253 & 378 \\
-126 & -188
\end{array}\right)
\end{aligned}
$$

Note that this is very different from

$$
\left(\begin{array}{rr}
5^{6} & 6^{6} \\
(-2)^{6} & (-2)^{6}
\end{array}\right)
$$

(Answer in the book is for A^{10}

$$
\begin{gathered}
A^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \Longrightarrow A^{\prime 4}-5 A^{\prime 3}+7 A^{\prime 2}-2 A^{\prime}+5 I= \\
\left(\begin{array}{lr}
11^{4}-51^{3}+71^{2}-21+5 & 0 \\
0 & 2^{4}-52^{3}+72^{2}-22+5
\end{array}\right)=\left(\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right) \\
A^{4}-5 A^{3}+7 A^{2}-2 A+5 I=\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ll}
6 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)^{-1} \\
=\left(\begin{array}{rr}
18 & -10 \\
-12 & 5
\end{array}\right) \frac{1}{-1}\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{T}=\left(\begin{array}{rr}
2 & -6 \\
2 & 9
\end{array}\right)
\end{gathered}
$$

7 9.47(d), §1 Asked

Given:

$$
A=\left(\begin{array}{rr}
5 & 6 \\
-2 & -2
\end{array}\right)
$$

with eigenvalues and corresponding eigenvectors

$$
\lambda_{1}=1, \vec{v}_{1}=\binom{3}{-2} \quad \lambda_{2}=2, \vec{v}_{2}=\binom{-2}{1}
$$

Asked: A matrix B so that $B^{2}=A$

8 9.47(d), §2 Solution

Do it first in the eigenvector basis!

$$
A^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) \quad \Longrightarrow \quad B^{\prime}=\left(\begin{array}{ll}
1 & 0 \\
0 & \sqrt{2}
\end{array}\right)
$$

This works for diagonal matrices only.
Now transform back:

$$
B=P B^{\prime} P^{-1}=\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 0 \\
0 & \sqrt{2}
\end{array}\right)\left(\begin{array}{rr}
3 & -2 \\
-2 & 1
\end{array}\right)^{-1}
$$

$$
B=\left(\begin{array}{rr}
3 & -2 \sqrt{2} \\
-2 & \sqrt{2}
\end{array}\right) \frac{1}{-1}\left(\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right)^{T}=\left(\begin{array}{rr}
-3+4 \sqrt{2} & -6+6 \sqrt{2} \\
2-2 \sqrt{2} & 4-3 \sqrt{2}
\end{array}\right)
$$

