9.48(c)

1 9.48(c), §1 Asked

Given:

$$
A=\left(\begin{array}{rrr}
1 & 2 & 2 \\
1 & 2 & -1 \\
-1 & 1 & 4
\end{array}\right)
$$

Asked: All eigenvalues and linearly independent eigenvectors.

2 9.48(c), §2 Solution

Eigenvalues:

$$
\begin{aligned}
& 0=|A-\lambda I|=\left|\begin{array}{ccc}
1-\lambda & 2 & 2 \\
1 & 2-\lambda & -1 \\
-1 & 1 & 4-\lambda
\end{array}\right| \\
&=-\lambda^{3}+7 \lambda^{2}-15 \lambda+9=-(\lambda-1)(\lambda-3)^{2}=0
\end{aligned}
$$

There is a single root: $\lambda_{1}=1$ and a double root $\lambda_{2}=\lambda_{3}=3$
Eigenvectors corresponding to $\lambda_{1}=1$ satisfy

$$
\left(A-\lambda_{1} I\right) \vec{v}_{1}=0=\left(\begin{array}{ccc}
1-1 & 2 & 2 \\
1 & 2-1 & -1 \\
-1 & 1 & 4-1
\end{array}\right)\left(\begin{array}{l}
v_{1 x} \\
v_{1 y} \\
v_{1 z}
\end{array}\right)
$$

Solving using Gaussian elimination:

$$
\begin{align*}
& \left(\begin{array}{rrr|r}
0 & 2 & 2 & 0 \\
1 & 1 & -1 & 0 \\
-1 & 1 & 3 & 0
\end{array}\right) \tag{1}\\
& \Longrightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & 2 & 2 & 0 \\
-1 & 1 & 3 & 0
\end{array}\right) \tag{3}\\
& \left(1^{\prime}\right)=(2) \tag{3}\\
& \left(2^{\prime}\right)=(1) \\
& \text { (3) } \\
& \Longrightarrow\left(\begin{array}{rrr|r}
1 & 1 & -1 & 0 \\
0 & 2 & 2 & 0 \\
0 & 2 & 2 & 0
\end{array}\right) \\
& \left(3^{\prime}\right)=(3)+\left(1^{\prime}\right)
\end{align*}
$$

$$
\Longrightarrow\left(\begin{array}{ccc|c}
\boxed{1} & 1 & -1 & 0 \\
0 & \boxed{2} & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{aligned}
& \left(1^{\prime}\right) \\
& \left(2^{\prime}\right) \\
& \left(3^{\prime \prime}\right)=\left(3^{\prime}\right)-\left(2^{\prime}\right)
\end{aligned}
$$

Equation (2') gives $v_{1 y}=-v_{1 z}$ and then (1^{\prime}) gives $v_{1 x}=2 v_{1 z}$.
The general solution space is:

$$
\left(\begin{array}{l}
v_{1 x} \\
v_{1 y} \\
v_{1 z}
\end{array}\right)=\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right) v_{1 z}
$$

We choose $v_{1 z}=1$ to get

$$
\vec{v}_{1}=\left(\begin{array}{l}
v_{1 x} \\
v_{1 y} \\
v_{1 z}
\end{array}\right)=\left(\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right)
$$

Eigenvectors corresponding to $\lambda_{2}=\lambda_{3}=3$ satisfy

$$
\left(A-\lambda_{2} I\right) \vec{v}_{2}=0=\left(\begin{array}{ccc}
1-3 & 2 & 2 \\
1 & 2-3 & -1 \\
-1 & 1 & 4-3
\end{array}\right)\left(\begin{array}{l}
v_{2 x} \\
v_{2 y} \\
v_{2 z}
\end{array}\right)
$$

Solving using Gaussian elimination:

$$
\begin{gather*}
\left(\begin{array}{rrr|r}
-2 & 2 & 2 & 0 \\
1 & -1 & -1 & 0 \\
-1 & 1 & 1 & 0
\end{array}\right) \tag{1}\\
\Longrightarrow\left(\begin{array}{ccc|c}
\boxed{-2} & 2 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gather*}
$$

$$
\begin{align*}
& \left(2^{\prime}\right)=2(2)+(1) \tag{1}\\
& \left(3^{\prime}\right)=2(3)-(1)
\end{align*}
$$

Equation (1') gives $v_{2 x}=v_{2 y}+v_{2 z}$. There are two unknown parameters.
The general solution space is:

$$
\left(\begin{array}{l}
v_{2 x} \\
v_{2 y} \\
v_{2 z}
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right) v_{2 y}+\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) v_{2 z}
$$

We need two independent eigenvectors to span the space corresponding to this multiple root.
We can use the two vectors above, which means choosing $v_{2 y}=1$ and $v_{2 z}=0$ for one, and $v_{2 y}=0$ and $v_{2 z}=1$ for the other. That gives

$$
\vec{v}_{2 a}=\left(\begin{array}{c}
v_{2 a x} \\
v_{2 a y} \\
v_{2 a z}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
0
\end{array}\right) \quad \vec{v}_{2 b}=\left(\begin{array}{c}
v_{2 b x} \\
v_{2 b y} \\
v_{2 b z}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
1
\end{array}\right)
$$

If the three vectors $\vec{v}_{1}, \vec{v}_{2 a}$, and $\vec{v}_{2 b}$ are used as basis, A becomes diagonal. So despite the multiple root, this A is still diagonalizable. But if the solution space for the second eigenvalue would have been one-dimensional, the matrix would not have been diagonalizable.
y

