9.56(a)

1 9.56(a), §1 Asked

Given:

$$
A=\left(\begin{array}{rr}
5 & 4 \\
4 & -1
\end{array}\right)
$$

Asked: The orthonormal transformation matrix P so that $A^{\prime}=P^{-1} A P$ is diagonal.

2 9.56(a), §2 Solution

Given:

$$
A=\left(\begin{array}{rr}
5 & 4 \\
4 & -1
\end{array}\right)
$$

Eigenvalues:

$$
|A-\lambda I|=\left|\begin{array}{cc}
5-\lambda & 4 \\
4 & -1-\lambda
\end{array}\right|=\lambda^{2}-4 \lambda-21=0
$$

There are two roots: $\lambda_{1}=-3$ and $\lambda_{2}=7$
The eigenvector corresponding to $\lambda_{1}=-3$ satisfies

$$
\left(\begin{array}{ll}
8 & 4 \tag{1}\\
4 & 2
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{ll}
8 & 4 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=2(2)-(1)
\end{aligned}
$$

Taking $v_{1 y}=-2$, then $v_{1 x}=1$, giving an eigenvector ($1,-2$). Normalizing this vector to length one gives:

$$
\vec{v}_{1}=\binom{1}{-2} / \sqrt{1^{2}+(-2)^{2}}=\binom{1 / \sqrt{5}}{-2 / \sqrt{5}}
$$

The eigenvector corresponding to $\lambda_{2}=7$ satisfies

$$
\left(\begin{array}{rr}
-2 & 4 \tag{1}\\
4 & -8
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{rr}
-2 & 4 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=(2)+2(1)
\end{aligned}
$$

Taking $v_{2 y}=1$, then $v_{2 x}=2$, giving after normalization:

$$
\vec{v}_{2}=\binom{2}{1} / \sqrt{2^{2}+1^{2}}=\binom{2 / \sqrt{5}}{1 / \sqrt{5}}
$$

Finally:

$$
P=\left(\vec{v}_{1} \vec{v}_{2}\right)=\left(\begin{array}{rr}
1 / \sqrt{5} & 2 / \sqrt{5} \\
-2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right)
$$

Check:

$$
P^{-1} A P=\left(\begin{array}{rr}
1 / \sqrt{5} & -2 / \sqrt{5} \\
2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right)\left(\begin{array}{rr}
5 & 4 \\
4 & -1
\end{array}\right)\left(\begin{array}{rr}
1 / \sqrt{5} & 2 / \sqrt{5} \\
-2 / \sqrt{5} & 1 / \sqrt{5}
\end{array}\right)=\left(\begin{array}{rr}
-3 & 0 \\
0 & 7
\end{array}\right)
$$

The diagonal form is what matrix A looks like in the coordinate system x^{\prime}, y^{\prime} shown below:

