9.58(b)

1 9.58(b), §1 Asked

Asked: Diagonalize

$$
q(x, y)=2 x^{2}-6 x y+10 y^{2}
$$

2 9.58(b), §2 Solution

$$
q=2 x^{2}-6 x y+10 y^{2}
$$

Find the matrix of coefficients:

$$
A=\left(\begin{array}{rr}
2 & -3 \\
-3 & 10
\end{array}\right)
$$

Eigenvalues:

$$
|A-\lambda I|=\left|\begin{array}{cc}
2-\lambda & -3 \\
-3 & 10-\lambda
\end{array}\right|=\lambda^{2}-12 \lambda+11=0
$$

There are two roots: $\lambda_{1}=1$ and $\lambda_{2}=11$
The eigenvector corresponding to λ_{1} satisfies

$$
\left(\begin{array}{rr}
1 & -3 \tag{1}\\
-3 & 9
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{rr}
1 & -3 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=(2)+3(1)
\end{aligned}
$$

Taking $v_{1 y}=1$, then $v_{1 x}=3$, giving an eigenvector (3,1). Normalizing this vector to length one gives:

$$
\vec{v}_{1}=\binom{3}{1} / \sqrt{3^{2}+1^{2}}=\binom{3 / \sqrt{10}}{1 / \sqrt{10}}=\hat{\imath}^{\prime}
$$

The eigenvector corresponding to λ_{2} satisfies

$$
\left(\begin{array}{ll}
-9 & -3 \tag{1}\\
-3 & -1
\end{array}\right) \quad \begin{aligned}
& (1) \\
& (2)
\end{aligned} \Longrightarrow \quad\left(\begin{array}{rr}
-9 & -3 \\
0 & 0
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=3(2)-(1)
\end{aligned}
$$

Taking $v_{2 y}=3$, then $v_{2 x}=-1$, giving after normalization:

$$
\vec{v}_{2}=\binom{-1}{3} / \sqrt{(-1)^{2}+3^{2}}=\binom{-1 / \sqrt{10}}{3 / \sqrt{10}}=\hat{\jmath}^{\prime}
$$

Since $1 / \sqrt{10}=\sin \left(18.4^{\circ}\right)$, the new axes are rotated 18.5° counter clockwise from the old:

In the new coordinates,

$$
q=x^{\prime 2}+11 y^{\prime 2}
$$

Note that lines of constant q are now seen to be elliptic.
Important note: It is seen that the quadratic form $\vec{x}^{T} A \vec{x}$ is always positive for nonzero \vec{x}. Symmetric matrices for which this is true are called positive definite. They have all positive eigenvalues. Similarly, if all eigenvalues are negative, a symmetric matrix is called negative definite. If all eigenvalues are positive or zero, it is called positive semi-definite.

Finite element codes for structures typically produce positive definite matrices, as do many other physical applications, such as the kinetic energy of a solid body. Definite matrices are typically easier to deal with in numerical applications than general matrices. For example, no pivoting is needed in the Gaussian elimination involving a definite matrix.

