Eigenvector Basis

Examples:

- decomposing motion along the fundamental modes;
- writing solid body motion along the principal axes;
- separation of variables;
- improving numerical schemes;
- ...

Diagonalization:

If we use the eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ of a matrix A as a new basis, so that the transformation matrix P contains the eigenvectors:

$$
P=\left(\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right),
$$

then the transformed matrix A^{\prime} is much simpler than the original A. In particular, it is diagonal:

$$
A^{\prime}=\left(\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
0 & 0 & \lambda_{3} & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

Reason: for any arbitrary vector

$$
\vec{w}=\left.w_{1}\right|_{S} \vec{v}_{1}+\left.w_{2}\right|_{S} \vec{v}_{2}+\ldots+\left.w_{n}\right|_{S} \vec{v}_{n}
$$

then

$$
A \vec{w}=\left.w_{1}\right|_{S} \lambda_{1} \vec{v}_{1}+\left.w_{2}\right|_{S} \lambda_{2} \vec{v}_{2}+\ldots+\left.w_{n}\right|_{S} \lambda_{n} \vec{v}_{n}
$$

So A increases the first coordinate in the eigenvector basis by λ_{1}, the second by λ_{2}, etcetera. That is exactly what the diagonal matrix A^{\prime} does with the vector of coefficients $\left(\left.w_{1}\right|_{S},\left.w_{2}\right|_{S}, \ldots,\left.w_{n}\right|_{S}\right)$.

Remember that the relationship between A and A^{\prime} is

$$
A=P A^{\prime} P^{-1} \text { or } A^{\prime}=P^{-1} A P
$$

Note: If an $n \times n$ matrix A has less than n independent eigenvectors, it is not diagonalizable. It is called defective. Most matrices are however diagonalizable:

- As long as all n-eigenvalues are distinct, the matrix is diagonalizable.
- Normal matrices, which commute with their transpose, $A A^{H}=A^{H} A$, always have a complete set of orthonormal eigenvectors anyway.
- Even if the matrix has less than n different eigenvalues and is not normal, it might still be diagonalizable.

