Introduction

Eigenvalues:

- buckling;
- modes of vibration;
- dynamical systems;
- principal axes;
- boundary layer instability;
- heat conduction;
- acoustics;
- electrical circuits;
- stability of numerical methods;
- exam questions;
- ...

Definition

A nonzero vector \vec{v} is an eigenvector of a matrix A if $A \vec{v}$ is a multiple of \vec{v} :

$$
A \vec{v}=\lambda \vec{v}
$$

The number λ is called the corresponding eigenvalue.
Graphically, if \vec{v} is an eigenvector of A, then the vector $A \vec{v}$ is in the same (or exactly opposite direction) as \vec{v} :

An eigenvector is indeterminate by a constant that must be chosen.

Example

Equations of motion:

$$
M\binom{\ddot{\theta}_{1}}{\ddot{\theta}_{2}}+K\binom{\theta_{1}}{\theta_{2}}=0
$$

Setting $\vec{\theta} \equiv\left(\theta_{1}, \theta_{2}\right)$

$$
M \ddot{\vec{\theta}}+K \vec{\theta}=0
$$

Premultiplying by M^{-1} and defining $A=M^{-1} K$,

$$
\ddot{\vec{\theta}}+A \vec{\theta}=0
$$

Try solutions of the form $\vec{\theta}=\vec{C} e^{i \omega t}$. The constant vector \vec{C} determines the "mode shape:" $\theta_{1} / \theta_{2}=C_{1} / C_{2}$. The exponential gives the time-dependent amplitude of this mode shape, with ω the natural frequency.

Plugging the assumed solution into the equations of motion:

$$
-\omega^{2} \vec{C}+A \vec{C}=0 \quad \Longrightarrow \quad A \vec{C}=\omega^{2} \vec{C}
$$

So the mode shape \vec{C} is an eigenvector of A and the corresponding eigenvalue gives the square of the frequency.

There will be two different eigenvectors \vec{C}, hence two mode shapes and two corresponding frequencies.

Note: we may lose symmetry in the above procedure. There are better ways to do this.

Procedure

To find the eigenvalues and eigenvectors of a matrix A,

1. Find the zeros of the determinant $|A-\lambda I|$ (i.e. of matrix A with $-\lambda$ added to each main diagonal element.) (The book uses $\lambda I-A$. This is very error-prone, and I do not recommend it.) For an $n \times n$ matrix $A,|A-\lambda I|$ is an n-th degree polynomial in λ. From it, we can find n eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, (which do not all need to be distinct, however.)
2. When the eigenvalues are found, for each eigenvalue λ_{i} the corresponding eigenvector(s) can be found as the basis of the null space of $A-\lambda_{i} I$. Note: Do not leave undetermined coefficients in eigenvectors. This is counted as an error.
