Introduction

Eigenvalues:

- buckling;
- modes of vibration;
- dynamical systems;
- principal axes;
- boundary layer instability;
- heat conduction;
- acoustics;
- electrical circuits;
- stability of numerical methods;
- exam questions;
- ...

Definition

A nonzero vector \vec{v} is an eigenvector of a matrix A if $A\vec{v}$ is a multiple of \vec{v} :

 $A\vec{v}=\lambda\vec{v}$

The number λ is called the corresponding eigenvalue.

Graphically, if \vec{v} is an eigenvector of A, then the vector $A\vec{v}$ is in the same (or exactly opposite direction) as \vec{v} :

An eigenvector is indeterminate by a constant that must be chosen.

Example

Equations of motion:

$$M\left(\begin{array}{c}\ddot{\theta}_1\\\ddot{\theta}_2\end{array}\right) + K\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right) = 0$$

Setting $\vec{\theta} \equiv (\theta_1, \theta_2)$

$$M\ddot{\vec{\theta}} + K\vec{\theta} = 0$$

Premultiplying by M^{-1} and defining $A = M^{-1}K$,

$$\ddot{\vec{\theta}} + A\vec{\theta} = 0$$

Try solutions of the form $\vec{\theta} = \vec{C}e^{i\omega t}$. The constant vector \vec{C} determines the "mode shape:" $\theta_1/\theta_2 = C_1/C_2$. The exponential gives the time-dependent amplitude of this mode shape, with ω the natural frequency.

Plugging the assumed solution into the equations of motion:

 $-\omega^2 \vec{C} + A \vec{C} = 0 \qquad \Longrightarrow \qquad A \vec{C} = \omega^2 \vec{C}$

So the mode shape \vec{C} is an eigenvector of A and the corresponding eigenvalue gives the square of the frequency.

There will be two different eigenvectors \vec{C} , hence two mode shapes and two corresponding frequencies.

Note: we may lose symmetry in the above procedure. There are better ways to do this.

Procedure

To find the eigenvalues and eigenvectors of a matrix A,

- 1. Find the zeros of the determinant $|A \lambda I|$ (i.e. of matrix A with $-\lambda$ added to each main diagonal element.) (The book uses $\lambda I A$. This is very error-prone, and I do not recommend it.) For an $n \times n$ matrix A, $|A \lambda I|$ is an *n*-th degree polynomial in λ . From it, we can find n eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$, (which do not all need to be distinct, however.)
- 2. When the eigenvalues are found, for each eigenvalue λ_i the corresponding eigenvector(s) can be found as the basis of the null space of $A \lambda_i I$. Note: Do not leave undetermined coefficients in eigenvectors. This is counted as an error.