Introduction

1 General

The most usual representation of systems on computers and elsewhere is using matrices. Finite element problems, dynamics, fluid mechanics, ..., are almost always matrix problems for the computer.

A matrix A is a table of numbers:

$$
A=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m n}
\end{array}\right)
$$

An $m \times n$ matrix consists of n column vectors (the columns), or equivalently of m row vectors (the rows).

Conversely, a column vector is equivalent to a matrix with only one column and a row vector is a matrix with only one row.

Square matrices are matrices with the same number of rows as columns.
Index notation:

$$
A=\left\{a_{i j}\right\} \quad(i=1, \ldots, m ; j=1, \ldots, n)
$$

where $\{\cdot\}$ indicates "the collection of values" or "set of values".

2 Scalar multiplication

Multiplying a matrix by a scalar (i.e. a number) means multiplying each coefficient by that scalar:

$$
k A=\left(\begin{array}{ccccc}
k a_{11} & k a_{12} & k a_{13} & \ldots & k a_{1 n} \\
k a_{21} & k a_{22} & k a_{23} & \ldots & k a_{2 n} \\
k a_{31} & k a_{32} & k a_{33} & \ldots & k a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
k a_{m 1} & k a_{m 2} & k a_{m 3} & \ldots & k a_{m n}
\end{array}\right)
$$

Just like for vectors.
Scalar multiplication in index notation:

$$
B=k A \quad \Longrightarrow \quad b_{i j}=k a_{i j} \text { for all } i \text { and } j
$$

3 Addition

Summation of two matrices adds corresponding coefficients:

$$
A+B=\left(\begin{array}{ccccc}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} & \ldots & a_{1 n}+b_{1 n} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23} & \ldots & a_{2 n}+b_{2 n} \\
a_{31}+b_{31} & a_{32}+b_{32} & a_{33}+b_{33} & \ldots & a_{3 n}+b_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & a_{m 3}+b_{m 3} & \ldots & a_{m n}+b_{m n}
\end{array}\right)
$$

(just like for vectors.) The matrices must be of the same size.
Summation in index notation:

$$
C=A+B \quad \Longrightarrow \quad c_{i j}=a_{i j}+b_{i j} \text { for all } i \text { and } j
$$

4 Zero matrices

Zero matrices have all coefficients zero. Adding a zero matrix to a matrix does not change the matrix.

