
Inverse Matrices

1 General

Inverse matrices are like inverses for numbers:

AA−1 = A−1A = I

Note that (A−1)
−1

= A.

The inverse only exists when the determinant of the matrix, |A|, is nonzero.

To get the inverses of small matrices, you could use the procedure of taking “minors”. In
index notation:

a−1 T
ij = (−1)i+j|Aij|/|A|

where Aij is the matrix A after you remove the column and row of element aij. See the
example problems.

Inverting products:
(AB)−1 = B−1A−1

Transposing and inversing commute:
(

AT
)

−1

=
(

A−1
)T

2 Orthonormal matrices

Orthonormal (orthogonal) matrices are matrices in which the columns vectors form an or-
thonormal set (each column vector has length one and is orthogonal to all the other colum
vectors).

For square orthonormal matrices, the inverse is simply the transpose,

Q−1 = QT

This can be seen from:
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It can be seen, from inverting the order of the factors, that the rows of a square orthonormal
matrices are an orthonormal set too.

Complex orthogonal matrices are called “unitary”.


