Matrix multiplication

1 General

Matrix multiplication is defined in terms of the row-column product:

$$
\begin{gathered}
C=A B=\left(\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 p} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
a_{i 1} & a_{i 2} & a_{i 3} & \ldots & a_{i p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots & a_{m p}
\end{array}\right)\left(\begin{array}{cccccc}
b_{11} & \ldots & b_{1 j} & \ldots & \ldots & b_{1 n} \\
b_{21} & \ldots & b_{2 j} & \ldots & \ldots & b_{2 n} \\
b_{31} & \ldots & b_{3 j} & \ldots & \ldots & b_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
b_{p 1} & \ldots & b_{p j} & \ldots & \ldots & b_{p n}
\end{array}\right) \\
C=\left(\begin{array}{ccccc}
c_{11} & \ldots & \ldots & \ldots & c_{1 n} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\ldots & \ldots & c_{i j} & \ldots & \ldots \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
c_{m 1} & \ldots & \ldots & \ldots & c_{m n}
\end{array}\right)
\end{gathered}
$$

where

$$
c_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\ldots+a_{i p} b_{p j}
$$

In other words, $c_{i j}$ is the dot product of the i-th row-vector of A times the j-th column-vector of B :

$$
A B=\left(\begin{array}{c}
\vec{a}_{1}^{T} \\
\vec{a}_{2}^{T} \\
\vec{a}_{3}^{T} \\
\vdots \\
\vec{a}_{m}^{T}
\end{array}\right)\left(\begin{array}{lllll}
\vec{b}_{1} & \vec{b}_{2} & \vec{b}_{3} & \ldots & \vec{b}_{n}
\end{array}\right)=\left(\begin{array}{ccccc}
\vec{a}_{1}^{T} \cdot \vec{b}_{1} & \vec{a}_{1}^{T} \cdot \vec{b}_{2} & \vec{a}_{1}^{T} \cdot \vec{b}_{3} & \ldots & \vec{a}_{1}^{T} \cdot \vec{b}_{n} \\
\vec{a}_{2}^{T} \cdot \vec{b}_{1} & \vec{a}_{2}^{T} \cdot \vec{b}_{2} & \vec{a}_{2}^{T} \cdot \vec{b}_{3} & \ldots & \vec{a}_{2}^{T} \cdot \vec{b}_{n} \\
\vec{a}_{3}^{T} \cdot \vec{b}_{1} & \vec{a}_{3}^{T} \cdot \vec{b}_{2} & \vec{a}_{3}^{T} \cdot \vec{b}_{3} & \ldots & \vec{a}_{3}^{T} \cdot \vec{b}_{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\vec{a}_{m}^{T} \cdot \vec{b}_{1} & \vec{a}_{m}^{T} \cdot \vec{b}_{2} & \vec{a}_{m}^{T} \cdot \vec{b}_{3} & \ldots & \vec{a}_{m}^{T} \cdot \vec{b}_{n}
\end{array}\right)
$$

(Here the first row of A is written as \vec{a}_{1}^{T}, the second row as \vec{a}_{2}^{T}, etc. Similar, the first column of B is \vec{b}_{1}, etc.)

The dots in the above product can be omitted since the matrix product of a row vector times a column vector is by definition the same as the dot product of those vectors.

Multiplication in index notation:

$$
C=A B \quad \Longrightarrow \quad c_{i j}=\sum_{k} a_{i k} b_{k j} \text { for all } i \text { and } j
$$

The summation is over neighboring indices.
For matrices to be multiplied, the second dimension of A must be the same as the first dimension of B.

Matrix multiplication does not ordinarily commute:

$$
A B \neq B A
$$

2 Unit matrix

The unit (or identity) matrix I is like the number 1 for numbers: multiplying by I does not change a matrix.

Form of the unit matrix:

$$
I=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 1
\end{array}\right)
$$

Note, blocks of zeros are often omitted, (or written as a humongous zero,) so

$$
I=\left(\begin{array}{lllll}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \ddots & \\
& & & & 1
\end{array}\right)
$$

Index notation

$$
I_{i j}=\delta_{i j} \quad(=1 \text { if } i=j ; \quad=0 \text { if } i \neq j)
$$

The tensor $\delta_{i j}$ is called the Kronecker delta.

