Transpose matrices

1 General

Transposing a matrix turns the columns into rows and vice-versa

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
a_{31} & a_{32} & \ldots & a_{3 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right) A^{T}=\left(\begin{array}{ccccc}
a_{11} & a_{21} & a_{31} & \ldots & a_{m 1} \\
a_{12} & a_{22} & a_{32} & \ldots & a_{m 2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{1 n} & a_{2 n} & a_{3 n} & \ldots & a_{m n}
\end{array}\right)
$$

Similarly, transposing turns a column vector into a row vector and vice-versa.
Another way of thinking about it is that the elements are flipped over around the "main diagonal", which runs from top left to bottom right:

$$
\left(\begin{array}{ccccc}
\begin{array}{|c|c}
a_{11} & a_{12} \\
a_{13} & \ldots \\
a_{1 n} \\
\hline a_{21} & a_{22}
\end{array} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right)
$$

(The sum of the elements on the main diagonal is called the trace of the matrix.)
Note that $\left(A^{T}\right)^{T}=A$.
Transpose in index notation:

$$
a_{i j}^{T}=a_{j i} \text { for all } i \text { and } j
$$

Note that in index notation, the main diagonal consists of the elements where $i=j$. These stay put during transposing.

Transposing matrix products:

$$
(A B)^{T}=B^{T} A^{T}
$$

For complex matrices, the normal generalization of transpose is "Hermitian conjugate", where you take the complex conjugate of each complex number, in addition to interchanging rows and columns: $A^{H} \equiv \bar{A}^{T}$, or $a_{i j}^{H}=\bar{a}_{j i}$.

Example:

$$
\left(\begin{array}{ll}
1+2 i & 3+4 i \\
5+6 i & 7+8 i
\end{array}\right)^{H}=\left(\begin{array}{ll}
1-2 i & 5-6 i \\
3-4 i & 7-8 i
\end{array}\right)
$$

2 Special matrices

Symmetric matrices satisfy

$$
S^{T}=S
$$

Symmetric matrices are very common in engineering. For example, most statics deals with symmetric matrices, as does solid body dynamics, and a lot of the simpler fluid flows.

Complex matrices for which $A^{H}=A$ are called "Hermitian matrices." They are all over quantum mechanics.

Skew-symmetric matrices satisfy

$$
K^{T}=-K
$$

Skew-symmetric matrices determine the velocity field in solid body motion, and other fields involving cross products.

Example: the following is a skew symmetric matrix:

$$
\left(\begin{array}{cc}
0 & 3 \\
-3 & 0
\end{array}\right)
$$

Diagonal matrices have only nonzero elements on the main diagonal:

$$
D=\left(\begin{array}{ccccc}
d_{11} & 0 & 0 & \ldots & 0 \\
0 & d_{22} & 0 & \ldots & 0 \\
0 & 0 & d_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & d_{n n}
\end{array}\right)
$$

An example is the unit matrix. In index notation, a matrix is diagonal iff $d_{i j}=0$ if $i \neq j$.
Upper triangular matrices have only nonzero elements on and above the main diagonal:

$$
U=\left(\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
0 & 0 & u_{33} & \ldots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right)
$$

In index notation, $u_{i j}=0$ if $j<i$.
Lower triangular matrices:

$$
L=\left(\begin{array}{ccccc}
l_{11} & 0 & 0 & \ldots & 0 \\
l_{21} & l_{22} & 0 & \ldots & 0 \\
l_{31} & l_{32} & l_{33} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
l_{n 1} & l_{n 2} & l_{n 3} & \ldots & l_{n n}
\end{array}\right)
$$

In index notation, $l_{i j}=0$ if $j>i$.
The transpose of an upper triangular matrix is a lower triangular one and vice-versa.

