Gram-Schmidt

Description:

Gram-Schmidt orthogonalization is a way of converting a given arbitrary basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$ into an equivalent orthonormal basis:

This often leads to better accuracy (e.g. in least square problems) and/or simplifications.

Modified Gram-Schmidt Procedure

Given a set of linearly independent vectors, $\vec{u}_{1}, \vec{u}_{2}, \ldots$, turn them into an equivalent orthonormal set $\hat{\imath}_{1}^{\prime}, \hat{\imath}_{2}^{\prime}, \ldots$ as follows:

Step 1:

1. Normalize the first vector \vec{u}_{1}. That will be your $\hat{\imath}_{1}^{\prime}$

$$
\hat{\imath}_{1}^{\prime}=\frac{\vec{u}_{1}}{\left\|\vec{u}_{1}\right\|}
$$

2. For the remaining vectors $\vec{u}_{2}, \vec{u}_{3}, \ldots$, eliminate their component in the direction of $\hat{\imath}_{1}^{\prime}$ using the following formula:

$$
\vec{u}_{j}^{*}=\vec{u}_{j}-\hat{\imath}_{1}^{\prime}\left(\hat{\imath}_{1}^{\prime H} \vec{u}_{j}\right)
$$

Note that $\hat{\imath}_{1}^{\prime H} \vec{u}_{j}=\left\|\hat{\imath}_{1}^{\prime}\right\|\left\|\vec{u}_{j}\right\| \cos \theta=\left\|\vec{u}_{j}\right\| \cos \theta$ is the component of \vec{u}_{j} in the direction of $\hat{\imath}_{1}^{\prime}$:

Also $\hat{\imath}_{1}^{\prime} \hat{\imath}_{1}^{\prime H} \vec{u}_{j}=\operatorname{proj}\left(\hat{\imath}_{1}^{\prime}, \vec{u}_{j}\right)$. The matrix $\hat{\imath}_{1}^{\prime} \hat{\imath}_{1}^{\prime H}$ is called the projection operator onto $\hat{\imath}_{1}^{\prime}$.
Ignore $\hat{\imath}_{1}^{\prime}$ in the remaining process.
Step 2:

1. Normalize the second vector \vec{u}_{2}^{*}. That will be your $\hat{\imath}_{2}^{\prime}$

$$
\hat{\imath}_{2}^{\prime}=\frac{\vec{u}_{2}^{*}}{\left\|\vec{u}_{2}^{*}\right\|}
$$

2. For the remaining vectors $\vec{u}_{3}, \vec{u}_{4}, \ldots$, eliminate their component in the direction of $\hat{\imath}_{2}^{\prime}$ using the following formula:

$$
\vec{u}_{j}^{* *}=\vec{u}_{j}^{*}-\hat{\imath}_{2}^{\prime}\left(\hat{\imath}_{2}^{\prime H} \vec{u}_{j}^{*}\right)
$$

Ignore $\hat{\imath}_{2}^{\prime}$ in the remaining process.
Repeat the process along the same lines until you run out of vectors.

Graphical example:

Normalize \vec{u}_{1} :

Eliminate the components in the \vec{u}_{1} direction from the rest:

Normalize \vec{u}_{2} :

Eliminate the components in the \vec{u}_{2} direction from the rest:

Normalize \vec{u}_{3} :

