Gram-Schmidt

Description:

Gram-Schmidt orthogonalization is a way of converting a given arbitrary basis $\{\vec{u}_1, \vec{u}_2, \ldots, \vec{u}_n\}$ into an equivalent orthonormal basis:

This often leads to better accuracy (e.g. in least square problems) and/or simplifications.

Modified Gram-Schmidt Procedure

Given a set of linearly independent vectors, $\vec{u}_1, \vec{u}_2, \ldots$, turn them into an equivalent orthonormal set $\hat{i}'_1, \hat{i}'_2, \ldots$ as follows:

Step 1:

1. Normalize the first vector \vec{u}_1 . That will be your \hat{i}'_1

$$\hat{\imath}_1' = \frac{\vec{u}_1}{||\vec{u}_1||}$$

2. For the remaining vectors $\vec{u}_2, \vec{u}_3, \ldots$, eliminate their component in the direction of \hat{i}'_1 using the following formula:

$$\vec{u}_j^* = \vec{u}_j - \hat{\imath}_1' \left(\hat{\imath}_1'^H \vec{u}_j \right)$$

Note that $\hat{i}_1^{\prime H} \vec{u}_j = ||\hat{i}_1^{\prime}||||\vec{u}_j||\cos\theta = ||\vec{u}_j||\cos\theta$ is the component of \vec{u}_j in the direction of \hat{i}_1^{\prime} :

Also $\hat{i}_1' \hat{i}_1'^H \vec{u}_j = \text{proj}(\hat{i}_1', \vec{u}_j)$. The matrix $\hat{i}_1' \hat{i}_1'^H$ is called the projection operator onto \hat{i}_1' . Ignore \hat{i}_1' in the remaining process.

Step 2:

1. Normalize the second vector $\vec{u}_2^*.$ That will be your $\hat{\imath}_2'$

$$\hat{i}_2' = \frac{\vec{u}_2^*}{||\vec{u}_2^*||}$$

2. For the remaining vectors $\vec{u}_3, \vec{u}_4, \ldots$, eliminate their component in the direction of \hat{i}'_2 using the following formula:

$$\vec{u}_{j}^{**} = \vec{u}_{j}^{*} - \hat{\imath}_{2}^{\prime} \left(\hat{\imath}_{2}^{\prime H} \vec{u}_{j}^{*}
ight)$$

Ignore $\hat{\imath}_2'$ in the remaining process.

Repeat the process along the same lines until you run out of vectors.

Graphical example:

Normalize \vec{u}_1 :

Eliminate the components in the \vec{u}_1 direction from the rest:

Normalize \vec{u}_2 :

Eliminate the components in the \vec{u}_2 direction from the rest:

Normalize \vec{u}_3 :

