Introduction

The span of a set of independent basis vectors $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}$ is the set of all vectors \vec{v} that can be described as linear combinations of the basis vectors:

$$
\vec{v}=c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+\ldots c_{n} \vec{a}_{n}
$$

- One basis vector spans a line:

$$
\vec{v}=c_{1} \vec{a}_{1}
$$

is a 1D straight line through the origin.

- Two basis vectors span a plane:

$$
\vec{v}=c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}
$$

is a 2 D plane through the origin.

- Three basis vectors span a 3D space:

$$
\vec{v}=c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+c_{3} \vec{a}_{3}
$$

is a 3 D space through the origin (in n-dimensional space.)

Remember the definition of independence: the basis vectors are independent if the only way to get zero is to take every c_{i} zero. It implies that you cannot express one basis vector in terms of the rest.

- Two vectors are linearly independent if they are not along the same line.
- Three vectors are linearly independent if they are not in the same plane.

The rank of a matrix is the number of independent rows, or columns. These are the same; see the example.

