3.51(a)

1 3.51(a), §1 Asked

Asked: Solve

$$
\begin{align*}
& 2 x+3 y=1 \tag{1}\\
& 5 x+7 y=3 \tag{2}
\end{align*}
$$

2 3.51(a), §2 Graphically

One unique solution point $(x, y)=(2,-1)$

3 3.51(a), §3 Elimination

Gaussian elimination:

$$
\begin{align*}
& 2 x+3 y=1 \tag{1}\\
& 5 x+7 y=3 \tag{2}
\end{align*}
$$

A. Forward Elimination:

Use (1) to eliminate x from (2):

$$
\begin{align*}
2 x+3 y & =1 \tag{1}\\
-y & =1
\end{align*}
$$

$\left(2^{\prime}\right)=2(2)-5(1)$

Note: you always must keep at least some of the original equation.
B. Back Substitution:

Solve (2') to find $y=-1$. Then use that value in (1) to find $x=2$.

4 3.51(a), §4 Matrix Form

$$
\begin{align*}
& 2 x+3 y=1 \tag{1}\\
& 5 x+7 y=3 \tag{2}
\end{align*}
$$

This can be written as

$$
\left(\begin{array}{ll}
2 & 3 \tag{1}\\
5 & 7
\end{array}\right)\binom{x}{y}=\binom{1}{3}
$$

or $A \vec{x}=\vec{b}$ where

$$
A=\left(\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right) \quad \vec{x}=\binom{x}{y} \quad \vec{b}=\binom{1}{3}
$$

More concisely, only write the augmented matrix:

$$
\left(\begin{array}{ll|l}
2 & 3 & 1 \tag{1}\\
5 & 7 & 3
\end{array}\right)
$$

After elimination:

$$
\left(\begin{array}{rr|r}
2 & 3 & 1 \tag{1}\\
0 & -1 & 1
\end{array}\right) \quad \begin{aligned}
& (1) \\
& \left(2^{\prime}\right)=2(2)-5(1)
\end{aligned}
$$

5 3.51(a), §5 Determinant

$$
|A|=\left|\begin{array}{ll}
2 & 3 \\
5 & 7
\end{array}\right|=27-53=-1
$$

