3.54

1 3.54(a), §1 Asked

Asked: Solve:

$$
\left(\begin{array}{cc|c}
1 & -2 & 5 \tag{1}\\
2 & 3 & 3 \\
3 & 2 & 7
\end{array}\right)
$$

2 3.54(a), §2 Solution

$$
\left(\begin{array}{cc|c}
\boxed{1} & -2 & 5 \tag{1}\\
2 & 3 & 3 \\
3 & 2 & 7
\end{array}\right)
$$

Forward elimination:

$$
\begin{align*}
& \left(\begin{array}{cc|c}
\boxed{1} & -2 & 5 \\
0 & 7 & -7 \\
0 & 8 & -8
\end{array}\right) \\
& \left(\begin{array}{cc|c}
\boxed{2} & 3 & 3 \\
0 & -7 & 7 \\
0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
(1) \\
\left(2^{\prime}\right)=(2)-2(1) \\
\left(3^{\prime}\right)=(3)-3(1)
\end{array} \\
& (1) \\
& \left(2^{\prime}\right) \\
& \left(3^{\prime \prime}\right)=7\left(3^{\prime}\right)-8\left(2^{\prime}\right) \tag{1}
\end{align*}
$$

Echelon form. You must bring it completely to this form.
Back substitution:
From $\left(3^{\prime \prime}\right)$, nothing; from $\left(2^{\prime}\right), y=-1$; from (1), $x=3$.
A unique solution.

3 3.54(b), §3 Asked

Asked: Solve:

$$
\left(\begin{array}{cccc|c}
1 & 2 & -3 & 2 & 2 \tag{1}\\
2 & 5 & -8 & 6 & 5 \\
3 & 4 & -5 & 2 & 4
\end{array}\right)
$$

4 3.54(b), §4 Solution

$$
\left(\begin{array}{cccc|c}
\boxed{1} & 2 & -3 & 2 & 2 \tag{1}\\
2 & 5 & -8 & 6 & 5 \\
3 & 4 & -5 & 2 & 4
\end{array}\right)
$$

Forward elimination:

$$
\begin{align*}
& \left(\begin{array}{cccc|c}
\boxed{1} & 2 & -3 & 2 & 2 \\
0 & \boxed{1} & -2 & 2 & 1 \\
0 & -2 & 4 & -4 & -2
\end{array}\right) \\
& \left(\begin{array}{lll|l}
\begin{array}{|ccc|}
1 & 2 & -3
\end{array} & \begin{array}{l}
(1) \\
0 \\
0 \\
0
\end{array} & -2 & 2 \\
1 \\
0 & 0 & 0 & 0
\end{array}\right) \\
& \left(3^{\prime}\right)=(2)-2(1)=(3)-3(1) \\
& \left(3^{\prime}\right) \\
& \left(3^{\prime \prime}\right)=\left(3^{\prime}\right)+2\left(2^{\prime}\right) \tag{1}
\end{align*}
$$

Echelon form. You must bring it completely to this form.
Back substitution:
From ($3^{\prime \prime}$), nothing; from (2^{\prime}), $y=1+2 z-2 t$; from (1), $x=2-2(1+2 z-2 t)+3 z-2 t=-z+2 t$.
Solution space is 2 D .

$53.54(\mathrm{c}), \S 5$ Asked

Asked: Solve (corrected):

$$
\left(\begin{array}{cccc|c}
1 & 2 & 4 & -5 & 3 \tag{1}\\
3 & -1 & 5 & 2 & 4 \\
5 & -4 & 6 & 9 & 2
\end{array}\right)
$$

6 3.54(c), §6 Solution

$$
\left(\begin{array}{cccc|c}
\boxed{1} & 2 & 4 & -5 & 3 \tag{1}\\
3 & -1 & 5 & 2 & 4 \\
5 & -4 & 6 & 9 & 2
\end{array}\right)
$$

Forward elimination:

$$
\begin{align*}
& \left(\begin{array}{cccc|c}
\boxed{1} & 2 & 4 & -5 & 3 \\
0 & \boxed{-7} & -7 & 17 & -5 \\
0 & -14 & -14 & 34 & -13
\end{array}\right) \\
& \begin{array}{l}
\left(2^{\prime}\right)=(2)-3(1) \\
\left(3^{\prime}\right)=(3)-5(1) \\
\left(\begin{array}{cccc|c}
\boxed{1} & 2 & -1 & 3 & 3 \\
0 & \boxed{-7} & -7 & 17 & -5 \\
0 & 0 & 0 & 0 & -3
\end{array}\right) \\
\begin{array}{l}
(1) \\
\left(2^{\prime}\right) \\
\left(3^{\prime \prime}\right)=\left(3^{\prime}\right)-2\left(2^{\prime}\right)
\end{array}
\end{array} \begin{array}{l}
\left(2^{\prime}\right) \\
\end{array}
\end{align*}
$$

Echelon form. You must bring it completely to this form.
Back substitution:
Equation ($3^{\prime \prime}$) cannot be satisfied: there is no solution.

