Null spaces

1 Null spaces

The null space of a matrix A are all vectors \vec{x} so that $A \vec{x}=0$. If A is square and $|A|$ is nonzero, the null space is simply $\vec{x}=0$ and has dimension 0 .

Nontrivial null spaces may correspond to internal stresses in structures, connectivity problems, vibrational mode shape, buckling shapes, eigenvectors corresponding to a given eigenvalue, etcetera.

You typically want to describe the null spaces as simply as possible. Defining a basis for the null space allows you to do so.

2 2D Example

$$
\left(\begin{array}{ll|l}
1 & 2 & 0 \tag{1}\\
2 & 4 & 0
\end{array}\right)
$$

Forward elimination:

$$
\left(\begin{array}{cc}
\boxed{1} & 2 \tag{1}\\
0 & 0 \\
\hline
\end{array}\right)
$$

Back substitution: $x=-2 y$. So, the null space is a line through the origin:

Vector form:

$$
\vec{r}=\binom{x}{y}=\binom{-2}{1} y
$$

so that $(-2,1)$ is one possible basis vector for this line. A line is a one-dimensional space, so it needs exactly one basis vector.

3 3D Example

$$
\left(\begin{array}{lll}
\boxed{1} & -2 & -3 \mid 0 \tag{1}
\end{array}\right)
$$

Forward elimination is trivial.
Back substitution: $x=2 y+3 z$. The solution space is a plane through the origin:

Vector form:

$$
\vec{r}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right) y+\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right) z
$$

so that $(2,1,0)$ and $(3,0,1)$ are one possible set of two basis vector for this plane. A plane is a 2 D space.

4 12D Example

Assuming there is no external force, i.e. $\vec{F}=0$ in the truss below,

the solution of the homogeneous equilibrium equations is

$$
\left(\begin{array}{c}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4} \\
T_{5} \\
T_{6} \\
T_{7} \\
T_{8} \\
T_{9} \\
T_{10} \\
T_{11} \\
T_{12}
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1 \\
1 \\
-1 \\
-1 \\
1 \\
-1 \\
-1 \\
1 \\
1
\end{array}\right) T_{12}
$$

All bars in the outer ring have the same tension force T_{12}, while the spokes have an opposite compressive force.

