1.41

1 1.41, §1 Asked

Given: The vectors

$$
\vec{u}=(1,-2,4) \quad \vec{v}=(3,5,1)
$$

Asked: various.

2 1.41, §2 Solution

$$
\vec{u}=(1,-2,4) \quad \vec{v}=(3,5,1)
$$

Sum:

$$
3 \vec{u}-2 \vec{v}=(31-23,3(-2)-25,34-21)=(-3,-16,10)
$$

Dot product:

$$
\vec{u} \cdot \vec{v}=13+(-2) 5+41=-3
$$

Norm or length:

$$
\|\vec{u}\|=\sqrt{1^{2}+(-2)^{2}+4^{2}}=\sqrt{21} \quad\|\vec{v}\|=\sqrt{3^{2}+5^{2}+1^{2}}=\sqrt{35}
$$

Angle between vectors:

$$
\cos (\vartheta)=\vec{u} \cdot \vec{v} /(\|\vec{u}\|\|\vec{v}\|)=-3 / \sqrt{21} \sqrt{35}=-3 /(7 \sqrt{15})
$$

Distance between the end points:

$$
d(\vec{u}, \vec{v})=\|\vec{u}-\vec{v}\|=\|(-2,-7,3)\|=\sqrt{4+49+9}=\sqrt{62}
$$

Projection:

$$
\operatorname{proj}(\vec{u}, \vec{v})=(\vec{u} \cdot \vec{v} /\|\vec{v}\|)(\vec{v} /\|\vec{v}\|)=(-3 / 35)(3,5,1)=(-9 / 35,-3 / 7,-3 / 35)
$$

