1.48(a)

1 1.48(a), §1 Asked

Given: The vectors

 $\vec{v} = (2,5)$ $\vec{u}_1 = (1,2)$ $\vec{u}_2 = (3,5)$

Asked: Write \vec{v} as a linear combination $a\vec{u}_1 + b\vec{u}_2$, i.e., find a and b so that $\vec{v} = a\vec{u}_1 + b\vec{u}_2$

2 1.48(a), §2 Solution

$$\vec{v} = (2,5)$$
 $\vec{u}_1 = (1,2)$ $\vec{u}_2 = (3,5)$

Write \vec{v} as a linear combination $a\vec{u}_1 + b\vec{u}_2$, i.e., find a and b so that $\vec{v} = a\vec{u}_1 + b\vec{u}_2$

$$\left(\begin{array}{c}2\\5\end{array}\right) = a\left(\begin{array}{c}1\\2\end{array}\right) + b\left(\begin{array}{c}3\\5\end{array}\right) = \left(\begin{array}{c}1a+3b\\2a+5b\end{array}\right)$$

a	+	3b	=	2	(1)
2a	+	5b	=	5	(2)

Eliminate a from equation (2) by substracting 2 times (1):

$$a + 3b = 2$$
 (1)
 $0 - b = 1$ (2') = (2) - 2(1)

Solve from the bottom up, (2') giving that b = -1 and then (1) giving that a = 5.