1.48(a)

1 1.48(a), §1 Asked

Given: The vectors

$$
\vec{v}=(2,5) \quad \vec{u}_{1}=(1,2) \quad \vec{u}_{2}=(3,5)
$$

Asked: Write \vec{v} as a linear combination $a \vec{u}_{1}+b \vec{u}_{2}$, i.e., find a and b so that $\vec{v}=a \vec{u}_{1}+b \vec{u}_{2}$

2 1.48(a), §2 Solution

$$
\vec{v}=(2,5) \quad \vec{u}_{1}=(1,2) \quad \vec{u}_{2}=(3,5)
$$

Write \vec{v} as a linear combination $a \vec{u}_{1}+b \vec{u}_{2}$, i.e., find a and b so that $\vec{v}=a \vec{u}_{1}+b \vec{u}_{2}$

$$
\begin{gather*}
\binom{2}{5}=a\binom{1}{2}+b\binom{3}{5}=\binom{1 a+3 b}{2 a+5 b} \\
a+3 b=2 \tag{1}\\
2 a+5 b=5 \tag{2}
\end{gather*}
$$

Eliminate a from equation (2) by substracting 2 times (1):

$$
\begin{array}{ll}
a+3 b=2 & (1) \tag{1}\\
0-b=1 & \left(2^{\prime}\right)=(2)-2(1)
\end{array}
$$

Solve from the bottom up, (2') giving that $b=-1$ and then (1) giving that $a=5$.

