1.56(b)

1 1.56(b), §1 Asked

Given: The plane $2 x-3 y+7 z=4$ and the point P with coordinates $(x, y, z)=(1,-5,7)$.
Asked: The parametric equation for the line ℓ through P and normal to the plane.

2 1.56(b), §2 Solution

Plane $2 x-3 y+7 z=4$ and the point $(1,-5,7)$.
In general, the equation for the line through P is

$$
\vec{r}=\vec{r}_{P}+\lambda \vec{s}
$$

where \vec{s} is any nonzero vector in the direction of the line.
The line is given to be normal to the plane, so the direction of the line is the direction of a normal vector to the plane, which can be picked out of the equation:

$$
\vec{r}=(x, y, z)=(1,-5,7)+\lambda(2,-3,7)=(1+2 \lambda,-5-3 \lambda, 7+7 \lambda)
$$

