$1.64(\mathrm{a})$

1 1.64(a), §1 Asked

Given: The vectors

$$
\vec{v}=(1,2,3) \quad \vec{w}=(1,-1,2)
$$

Asked: A unit vector \vec{u} normal to these two.

2 1.64(a), §2 Solution

$$
\vec{v}=(1,2,3) \quad \vec{w}=(1,-1,2)
$$

If we cross \vec{v} and \vec{w}, we get a vector normal to them. If we divide that cross product by its length it will become a unit vector:

$$
\begin{gathered}
\vec{v} \times \vec{w} \equiv\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 2 & 3 \\
1 & -1 & 2
\end{array}\right|=\hat{\imath}(22-3(-1))+\hat{\jmath}(31-12)+\hat{k}(1(-1)-21)=(7,1,-3) \\
\vec{u}=\frac{\vec{v} \times \vec{w}}{\|\vec{v} \times \vec{w}\|}=\frac{(7,1,-3)}{\sqrt{7^{2}+1^{2}+(-3)^{2}}}=(7 / \sqrt{59}, 1 / \sqrt{59},-3 / \sqrt{59})
\end{gathered}
$$

