Introduction

Vectors:

- Statics and Dynamics
- Physics
- Geometry
- Computer solutions
- ...

Properties:

- The vector above as a list of numbers:

$$
\vec{r}=\vec{x}=\mathbf{x}=\binom{4}{2} \text { or } \vec{r}^{T}=\vec{x}^{T}=\mathbf{x}^{T}=(4,2)
$$

If the list is written vertically, the vector is called a column vector; if it is written horizontally, it is a row vector. An n-dimensional row vector is equivalent to a $1 \times n$ size matrix; an n-dimensional column vector to a $n \times 1$ matrix,

- Components of the vector above: $r_{1}=r_{x}=x_{1}=x=4, r_{2}=r_{y}=x_{2}=y=2$.
- Addition of vectors:

$(4,2)+(1,3)=(4+1,2+3)=(5,5)$.
- Multiplication of a vector by a scalar:

$1.5(4,2)=(1.54,1.52)=(6,3)$.
- Length or norm of a vector:

- Definition:

$$
\| \vec{a}| |=|\vec{a}|=a=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}+\ldots}
$$

- Unit vectors: Unit vectors have length one.
- Distance: The distance between two points \vec{r}_{1} and \vec{r}_{2} is by definition $\left\|\vec{r}_{2}-\vec{r}_{1}\right\|$:

- Dot (scalar) product:

- Definition:

$$
\vec{a} \cdot \vec{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}+\ldots=\|\vec{a}\|\|\vec{b}\| \cos \vartheta
$$

- Orthogonality: If the dot product is zero, the vectors are by definition orthogonal to each other.
- Length: $\|\vec{a}\|=\sqrt{\vec{a} \cdot \vec{a}}$.
- Projection:

The magnitude of the (orthogonal) component (or coordinate) of \vec{a} in the direction of \vec{b} is:

$$
a_{b}=a \cos (\vartheta)=\vec{a} \cdot \hat{b}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|}
$$

The projection of \vec{a} onto \vec{b} is

$$
\operatorname{proj}(\vec{a}, \vec{b})=\vec{a}_{b}=a_{b} \hat{b}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|} \frac{\vec{b}}{\|\vec{b}\|}
$$

