3.39

1 3.39, §1 Asked

Solve:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x}{t}
$$

2 3.39, §2 Solution

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{x}{t}
$$

The unknown is clearly $x(t)$.
Separation of variables:

$$
e^{\ln |x|}=e^{\ln |t|+C} \Longrightarrow \quad \begin{aligned}
& \frac{\mathrm{d} x}{x}=\frac{\mathrm{d} t}{t} \\
& \ln |x|=\ln |t|+C
\end{aligned}
$$

An additional "initial" condition would be needed to find D. For example, $x=1$ at $t=1$.
Note: the O.D.E. applies at all positions. Initial or boundary conditions apply only to a specific point.

