### 3.42

## 1 3.42, §1 Asked

Solve:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(x^{2}+1\right) y \quad y=1 \text { at } x=-1
$$

## 2 3.42, §2 Solution

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(x^{2}+1\right) y \quad y=1 \text { at } x=-1
$$



Solve the O.D.E. first:

$$
\begin{gathered}
\frac{\mathrm{d} y}{y}=-\left(x^{2}+1\right) \mathrm{d} x \\
\ln |y|=-\frac{1}{3} x^{3}-x+C \\
y= \pm e^{C} e^{-\frac{1}{3} x^{3}-x} \\
y=D e^{-\frac{1}{3} x^{3}-x}
\end{gathered}
$$



Since the additional condition is $y=1$ at $x=-1$, substitute in $y=1$ and $x=-1$ to get D :

$$
1=D e^{\frac{1}{3}+1}
$$

So, at any $x$ :

$$
y=e^{-\frac{1}{3} x^{3}-x-\frac{4}{3}}
$$

