5.34

1 5.34, §1 Asked

Solve:

$$
y^{\prime}+x^{2} y=x^{2}
$$

$25.34, \S 2$ Solution

$$
y^{\prime}+x^{2} y=x^{2}
$$

The equation is linear.
Solution of the homogeneous equation:

$$
\begin{gathered}
y^{\prime}+x^{2} y=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} y}{y}=-x^{2} \mathrm{~d} x \\
\ln |y|=-\frac{1}{3} x^{3}+C_{1} \quad \Longrightarrow \quad y=C e^{-\frac{1}{3} x^{3}}
\end{gathered}
$$

Solution of the inhomogeneous equation:

$$
y=C(x) e^{-\frac{1}{3} x^{3}}
$$

into

$$
\begin{gathered}
y^{\prime}+x^{2} y=x^{2} \\
C^{\prime} e^{-\frac{1}{3} x^{3}}-C e^{-\frac{1}{3} x^{3}} x^{2}+x^{2} C e^{-\frac{1}{3} x^{3}}=x^{2} \\
C^{\prime}=x^{2} e^{\frac{1}{3} x^{3}} \Longrightarrow C=e^{\frac{1}{3} x^{3}}+C_{0}
\end{gathered}
$$

Solution:

$$
y=C(x) e^{-\frac{1}{3} x^{3}}=1+C_{0} e^{-\frac{1}{3} x^{3}}
$$

Note: function $y(x)=1$ is called a particular solution. It is one solution that satisfies the inhomogeneous equation.

The general solution of linear equations is always: (any arbitrary particular solution) plus (the general solution of the homogeneous equation).

(What is wrong in the graph above)?

