### 5.38

## 1 5.38, §1 Asked

Solve:

$$
x y^{\prime}+y=x y^{3}
$$

## 2 5.38, §2 Solution

$$
x y^{\prime}+y=x y^{3}
$$

It is a Bernoulli equation since it has terms linear in $y$ and a power of $y$.

$$
x y^{-3} y^{\prime}+y^{-2}=x
$$

Put $u=y^{-2}$ :

$$
-\frac{1}{2} x u^{\prime}+u=x
$$

Solution of the homogeneous equation:

$$
-\frac{1}{2} x u^{\prime}+u=0 \quad \Longrightarrow \quad \frac{\mathrm{~d} u}{u}=2 \frac{\mathrm{~d} x}{x} \quad \Longrightarrow \quad u=C x^{2}
$$

Solution of the inhomogeneous equation:

$$
u=C(x) x^{2}
$$

into the inhomogeneous equation:

$$
\begin{aligned}
& -\frac{1}{2} x C^{\prime} x^{2}-\frac{1}{2} x C 2 x+C x^{2}=x \\
& C^{\prime}=-\frac{2}{x^{2}} \quad \Longrightarrow \quad C=\frac{2}{x}+C_{0} \\
& u=C(x) x^{2}=2 x+C_{0} x^{2}=\frac{1}{y^{2}}
\end{aligned}
$$

Solution:

$$
y=\frac{ \pm 1}{\sqrt{2 x+C_{0} x^{2}}}
$$

For $C_{0}=0 y= \pm 1 / \sqrt{2 x}$ :


For $x=-2 / C_{0}, y$ is infinite.
For $C_{0}<0$ :


For $C_{0}>0$ :


Total:


