Linear Equations

Linear equation:

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+p(x) y=q(x)
$$

The terms linear in y are the homogeneous part, the terms independent of y are the inhomogeneous terms.

Linear equations allow solutions to be added:

$$
\begin{gathered}
\left.\begin{array}{c}
y_{1}^{\prime}+p(x) y_{1}=q_{1}(x) \\
y_{2}^{\prime}+p(x) y_{2}=q_{2}(x)
\end{array}\right\} \\
\Longrightarrow \quad\left(y_{1}+y_{2}\right)^{\prime}+p(x)\left(y_{1}+y_{2}\right)=q_{1}(x)+q_{2}(x)
\end{gathered}
$$

Solve the homogeneous equation first:

$$
y^{\prime}+p y=0
$$

Separable:

$$
\begin{aligned}
& \frac{\mathrm{d} y}{y}=-p \mathrm{~d} x \\
& y=C e^{-\int p \mathrm{~d} x}
\end{aligned}
$$

Now solve the inhomogeneous equation:
Variation of parameter:

$$
y=C(x) e^{-\int p \mathrm{~d} x}
$$

Put in the O.D.E. and solve for $C(x)$.

